Line 1: Line 1:
 
a/<math>\mu({|f|>0})>0</math>, so we have
 
a/<math>\mu({|f|>0})>0</math>, so we have
 +
 
<math>(\int_{X}|f|^{n})^{1/n} \leq (\mu(X)||f||_{\infty})^{1/n}</math>
 
<math>(\int_{X}|f|^{n})^{1/n} \leq (\mu(X)||f||_{\infty})^{1/n}</math>
 +
 +
Taking the limit of both side as <math>n</math> go to infinity, we get
 +
 +
<math>\lim_{n\to \infty}||f||_{n} = ||f||_{\infty}</math>

Revision as of 13:33, 11 July 2008

a/$ \mu({|f|>0})>0 $, so we have

$ (\int_{X}|f|^{n})^{1/n} \leq (\mu(X)||f||_{\infty})^{1/n} $

Taking the limit of both side as $ n $ go to infinity, we get

$ \lim_{n\to \infty}||f||_{n} = ||f||_{\infty} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood