Line 8: Line 8:
 
<math>f \in L^1</math> if and only if <math>\sum_{n=1}^{\infty}nm(E_n) < \infty.</math>
 
<math>f \in L^1</math> if and only if <math>\sum_{n=1}^{\infty}nm(E_n) < \infty.</math>
  
First, if <math> m(X)= /infty </math>, it's done. Hence let's suppose that <math> m(X)<\infty </math>
+
First, if <math> m(X)= \infty </math>, it's done. Hence let's suppose that <math> m(X)<\infty </math>
 +
 
 +
Now, WTS that <math> f \in L^{p} </math>.

Revision as of 21:59, 10 July 2008

Suppose we know the conclusion of problem 8,

Problem 8 Let $ X $ be a finite measure space. If $ f $ is measurable, let

$ E_n = \{x \in X : n-1 \leq |f(x)| < n \} $. Then

$ f \in L^1 $ if and only if $ \sum_{n=1}^{\infty}nm(E_n) < \infty. $

First, if $ m(X)= \infty $, it's done. Hence let's suppose that $ m(X)<\infty $

Now, WTS that $ f \in L^{p} $.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett