Line 3: | Line 3: | ||
Let <math>g_{n}(x)= \sum_{k=1}^{n}f_{k}(x)=\sum_{1}^{n}\int_{0}^{x}f_{k}^{'}(t)dt=\int_{0}^{x}(\sum_{k=0}^{n}f_{k}^{'}(t))dt </math> | Let <math>g_{n}(x)= \sum_{k=1}^{n}f_{k}(x)=\sum_{1}^{n}\int_{0}^{x}f_{k}^{'}(t)dt=\int_{0}^{x}(\sum_{k=0}^{n}f_{k}^{'}(t))dt </math> | ||
− | Let <math>h(t)=\sum_{k=1}^{ | + | Let <math>h(t)=\sum_{k=1}^{what the hell is this}f_{k}^{'}(t)</math> |
Revision as of 09:28, 10 July 2008
Since all the $ f_{n} $ are AC, there exists $ f_{n}^{'} $ such that $ f_{n}(x)=f_{n}(x)-f_{n}(0)=\int_{0}^{x}f_{n}^{'}(t)dt $ and $ f_{n}^{'} $ are nonnegative almost everywhere.
Let $ g_{n}(x)= \sum_{k=1}^{n}f_{k}(x)=\sum_{1}^{n}\int_{0}^{x}f_{k}^{'}(t)dt=\int_{0}^{x}(\sum_{k=0}^{n}f_{k}^{'}(t))dt $
Let $ h(t)=\sum_{k=1}^{what the hell is this}f_{k}^{'}(t) $