Line 1: Line 1:
 
Since <math> \int_X|f|\mbox{d}\mu = \sum_{n = 1}^{\infty}\int_{E_n}|f|\mbox{d}\mu </math>, and <math>E_n=\{x \in X : n-1 \leq |f| \leq n\}</math>, then
 
Since <math> \int_X|f|\mbox{d}\mu = \sum_{n = 1}^{\infty}\int_{E_n}|f|\mbox{d}\mu </math>, and <math>E_n=\{x \in X : n-1 \leq |f| \leq n\}</math>, then
<math> \sum_{n = 1}^{\infty}(n-1)\mu(E_n) \leq \sum_{n = 1}^{\infty}\int_{E_n}|f|\mbox{d}\mu \leq\sum_{n = 1}^{\infty}n\mu(E_n).
+
<math> \sum_{n = 1}^{\infty}(n-1)\mu(E_n) \leq \sum_{n = 1}^{\infty}\int_{E_n}|f|\mbox{d}\mu \leq\sum_{n = 1}^{\infty}n\mu(E_n)</math>.
 +
 
 +
Then if <math>\sum_{n = 1}^{\infty}n\mu(E_n) < \infty</math>, then <math> \int_X|f|\mbox{d}\mu < \infty, </math>, i.e. <math>f \in L^1</math>.
 +
 
 +
If <math>f \in L^1</math>, then <math>\sum_{n = 1}^{\infty}(n-1)\mu(E_n) < \infty</math>. Then <math>\sum_{n = 1}^{\infty}n\mu(E_n) = \sum_{n = 1}^{\infty}(n-1)\mu(E_n) + \sum_{n = 1}^{\infty}\mu(E_n) = \sum_{n = 1}^{\infty}(n-1)\mu(E_n) + \mu(X) < \infty </math>, since <math>X</math> is a finite measure space.

Revision as of 01:57, 10 July 2008

Since $ \int_X|f|\mbox{d}\mu = \sum_{n = 1}^{\infty}\int_{E_n}|f|\mbox{d}\mu $, and $ E_n=\{x \in X : n-1 \leq |f| \leq n\} $, then $ \sum_{n = 1}^{\infty}(n-1)\mu(E_n) \leq \sum_{n = 1}^{\infty}\int_{E_n}|f|\mbox{d}\mu \leq\sum_{n = 1}^{\infty}n\mu(E_n) $.

Then if $ \sum_{n = 1}^{\infty}n\mu(E_n) < \infty $, then $ \int_X|f|\mbox{d}\mu < \infty, $, i.e. $ f \in L^1 $.

If $ f \in L^1 $, then $ \sum_{n = 1}^{\infty}(n-1)\mu(E_n) < \infty $. Then $ \sum_{n = 1}^{\infty}n\mu(E_n) = \sum_{n = 1}^{\infty}(n-1)\mu(E_n) + \sum_{n = 1}^{\infty}\mu(E_n) = \sum_{n = 1}^{\infty}(n-1)\mu(E_n) + \mu(X) < \infty $, since $ X $ is a finite measure space.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett