Line 1: Line 1:
<math>\int_{\{|f_n|>M\}}|f_n|\leq\int_{(0,1)}|f_n-f|+\int_{\{|f_n|>M\}}|f|
+
<math>\int_{\{|f_n|>M\}}|f_n|\leq\int_{(0,1)}|f_n-f|+\int_{\{|f_n|>M\}}|f|\\
  
 
Since \int_{(0,1)}|f_n-f|\to0,
 
Since \int_{(0,1)}|f_n-f|\to0,
 
</math>
 
</math>

Revision as of 08:45, 2 July 2008

$ \int_{\{|f_n|>M\}}|f_n|\leq\int_{(0,1)}|f_n-f|+\int_{\{|f_n|>M\}}|f|\\ Since \int_{(0,1)}|f_n-f|\to0, $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal