Line 3: Line 3:
 
Let <math> g(t) = \left ( \frac{dz}{dt} \right ) </math>
 
Let <math> g(t) = \left ( \frac{dz}{dt} \right ) </math>
  
[[Image:7b1_OldKiwi.jpg]]
+
[[Image:7b1_OldKiwi.jpg|400px|]]
[[Image:7b2_OldKiwi.jpg]]
+
[[Image:7b2_OldKiwi.jpg|400px|]]
  
 
Therefore, <math> m_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right) , n_k = \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) e^\frac{-j2k\pi2}{4} \right)</math>
 
Therefore, <math> m_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right) , n_k = \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) e^\frac{-j2k\pi2}{4} \right)</math>

Revision as of 11:19, 1 July 2008

7b OldKiwi.jpg

Let $ g(t) = \left ( \frac{dz}{dt} \right ) $

7b1 OldKiwi.jpg 7b2 OldKiwi.jpg

Therefore, $ m_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right) , n_k = \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) e^\frac{-j2k\pi2}{4} \right) $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett