Line 3: Line 3:
 
==Hyperbolic Functions==
 
==Hyperbolic Functions==
  
* <math>sinh(x) = \frac{e^x - e^{-x}}{2}</math>
+
* <math>\sinh(x) = \frac{e^x - e^{-x}}{2}</math>
  
* <math>cosh(x) = \frac{e^x + e^{-x}}{2}</math>
+
* <math>\cosh(x) = \frac{e^x + e^{-x}}{2}</math>
  
* <math>tanh(x) = \frac{sinh(x)}{cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}</math>
+
* <math>\tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}</math>
  
* <math>coth(x) = \frac{cosh(x)}{sinh(x)} = \frac{{e^x + e^{-x}}}{{e^x - e^{-x}}}</math>
+
* <math>\coth(x) = \frac{\cosh(x)}{\sinh(x)} = \frac{{e^x + e^{-x}}}{{e^x - e^{-x}}}</math>
  
* <math>sech(x) = \frac{1}{cosh(x)} = \frac{2}{{e^x + e^{-x}}}</math>
+
* <math>\text{sech}(x) = \frac{1}{\cosh(x)} = \frac{2}{{e^x + e^{-x}}}</math>
  
* <math>csch(x) = \frac{1}{sinh(x)} = \frac{2}{e^x - e^{-x}}</math>
+
* <math>\text{csch}(x) = \frac{1}{\sinh(x)} = \frac{2}{e^x - e^{-x}}</math>
  
 
[[User:Idryg|Idryg]] 20:10, 11 October 2008 (UTC)
 
[[User:Idryg|Idryg]] 20:10, 11 October 2008 (UTC)
Line 19: Line 19:
 
==Basic Integration Formulas==
 
==Basic Integration Formulas==
  
<math>\int\frac{du}{\sqrt{a^2-u^2}}=sin^{-1}\frac{u}{a} + C</math>
+
<math>\int\frac{du}{\sqrt{a^2-u^2}}=\sin^{-1}\frac{u}{a} + C</math>

Revision as of 09:50, 12 October 2008

Just in case so you don't have to look them up in your book or whatever. And so I can learn how to use Latex!

Hyperbolic Functions

  • $ \sinh(x) = \frac{e^x - e^{-x}}{2} $
  • $ \cosh(x) = \frac{e^x + e^{-x}}{2} $
  • $ \tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}} $
  • $ \coth(x) = \frac{\cosh(x)}{\sinh(x)} = \frac{{e^x + e^{-x}}}{{e^x - e^{-x}}} $
  • $ \text{sech}(x) = \frac{1}{\cosh(x)} = \frac{2}{{e^x + e^{-x}}} $
  • $ \text{csch}(x) = \frac{1}{\sinh(x)} = \frac{2}{e^x - e^{-x}} $

Idryg 20:10, 11 October 2008 (UTC)

Basic Integration Formulas

$ \int\frac{du}{\sqrt{a^2-u^2}}=\sin^{-1}\frac{u}{a} + C $

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison