Line 9: Line 9:
 
* <math>tan(x) = \frac{sinh(x)}{cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}</math>
 
* <math>tan(x) = \frac{sinh(x)}{cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}</math>
  
*
+
* <math>coth(x) = \frac{cosh(x)}{sinh(x)} = \frac{{e^x + e^{-x}}}{{e^x - e^{-x}}}</math>
 +
 
 +
* <math>sech(x) = \frac{1}{cosh(x)} = \frac{1}{{e^x + e^{-x}}}</math>
 +
 
 +
* <math>csch(x) = \frac{1}{sinh(x)} = \frac{1}{{e^x - e^{-x}}{2}}</math>

Revision as of 15:08, 11 October 2008

Just in case you don't have to look them up in your book or whatever. And so I can learn how to use Latex!

Hyperbolic Functions

  • $ sinh(x) = \frac{e^x - e^{-x}}{2} $
  • $ cosh(x) = \frac{e^x + e^{-x}}{2} $
  • $ tan(x) = \frac{sinh(x)}{cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}} $
  • $ coth(x) = \frac{cosh(x)}{sinh(x)} = \frac{{e^x + e^{-x}}}{{e^x - e^{-x}}} $
  • $ sech(x) = \frac{1}{cosh(x)} = \frac{1}{{e^x + e^{-x}}} $
  • $ csch(x) = \frac{1}{sinh(x)} = \frac{1}{{e^x - e^{-x}}{2}} $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch