Line 12: Line 12:
 
== Theorems ==
 
== Theorems ==
 
=== Element commutes with inverse ===
 
=== Element commutes with inverse ===
<math>Thm: \forall a\in G</math>  <math>a\cdot a^{-1} = a^{-1}\cdot a = 1</math>
+
Thm: <math>\forall a\in G</math>  <math>a\cdot a^{-1} = a^{-1}\cdot a = 1</math>
  
<math>Prf: Since a^{-1}\in G, its inverse (a^{-1})^{-1}\in G with (a^{-1})^{-1}\cdot a^{-1} = 1 by the inverse axiom.  But also a^{-1}\cdot a = 1</math>
+
Prf: Let <math>a</math> be an arbitrary element of <math>G</math>.  Since <math>a^{-1}\in G</math>, it has an inverse <math>(a^{-1})^{-1}</math> in <math>G</math> such that <math>(a^{-1})^{-1}\cdot a^{-1} = 1</math> by the inverse axiom.  But <math>1\cdot a^{-1} = a^{-1}</math> by the identity axiom, so substituting into the previous equation: <math>(a^{-1})^{-1}\cdot (1\cdot a^{-1}) = 1</math>.  But by the inverse axiom, <math>1 = a^{-1}\cdot a</math>, so substituting again: <math>(a^{-1})^{-1}((a^{-1}\cdot a)\cdot a^{-1}) = 1</math> and by associativity <math>((a^{-1})^{-1}\cdot a^{-1})\cdot(a\cdot a^{-1}) = 1</math>.  But <math>((a^{-1})^{-1}\cdot a^{-1}) = 1</math> and <math>1\cdot(a\cdot a^{-1}) = a\cdot a^{-1}</math>, so <math>a\cdot a^{-1} = 1</math>.  Since <math>a^{-1}\cdot a = 1</math> is given by the inverse axiom, <math>a\cdot a^{-1} = a^{-1}\cdot a = 1</math>.

Revision as of 11:17, 14 May 2008

Definition (left-sided)

A group $ \langle G, \cdot \rangle $ is a set G and a Binary Operation_OldKiwi $ \cdot $ on G (closed over G by definition) such that the group axioms hold:

  1. Associativity: $ a\cdot(b\cdot c) = (a\cdot b)\cdot c $ $ \forall a,b,c \in G $
  2. Identity: $ \exists e\in G $ such that $ e\cdot a = a $ $ \forall a \in G $
  3. Inverse: $ \forall a\in G $ $ \exists a^{-1}\in G $ such that $ a^{-1}\cdot a = e $

Notation

Groups written additively use + to denote their Binary Operation_OldKiwi, 0 to denote their identity, $ -a $ to denote the inverse of element $ a $, and $ na $ to denote $ a + a + \ldots + a $ ($ n $ terms).

Groups written multiplicatively use $ \cdot $ or juxtaposition to denote their Binary Operation_OldKiwi, 1 to denote their identity, $ a^{-1} $ to denote the inverse of element $ a $, and $ a^n $ to denote $ a \cdot a \cdot \ldots \cdot a $ ($ n $ terms).

Theorems

Element commutes with inverse

Thm: $ \forall a\in G $ $ a\cdot a^{-1} = a^{-1}\cdot a = 1 $

Prf: Let $ a $ be an arbitrary element of $ G $. Since $ a^{-1}\in G $, it has an inverse $ (a^{-1})^{-1} $ in $ G $ such that $ (a^{-1})^{-1}\cdot a^{-1} = 1 $ by the inverse axiom. But $ 1\cdot a^{-1} = a^{-1} $ by the identity axiom, so substituting into the previous equation: $ (a^{-1})^{-1}\cdot (1\cdot a^{-1}) = 1 $. But by the inverse axiom, $ 1 = a^{-1}\cdot a $, so substituting again: $ (a^{-1})^{-1}((a^{-1}\cdot a)\cdot a^{-1}) = 1 $ and by associativity $ ((a^{-1})^{-1}\cdot a^{-1})\cdot(a\cdot a^{-1}) = 1 $. But $ ((a^{-1})^{-1}\cdot a^{-1}) = 1 $ and $ 1\cdot(a\cdot a^{-1}) = a\cdot a^{-1} $, so $ a\cdot a^{-1} = 1 $. Since $ a^{-1}\cdot a = 1 $ is given by the inverse axiom, $ a\cdot a^{-1} = a^{-1}\cdot a = 1 $.

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn