Line 10: Line 10:
 
<math> 56: \frac{\pi}{4} + \ln{2} </math>
 
<math> 56: \frac{\pi}{4} + \ln{2} </math>
  
<math> 84 a) = -\cos(\theta)+\frac{1}{3}\cos^3(\theta)+c</math>
+
<math> 84 a) : -\cos(\theta)+\frac{1}{3}\cos^3(\theta)+c</math>
  
<math> 84b) = -\cos(\theta)+\frac{2}{3}\cos^3(\theta)-\frac{1}{5}\cos^5(\theta)+c </math>
+
<math> 84b) : -\cos(\theta)+\frac{2}{3}\cos^3(\theta)-\frac{1}{5}\cos^5(\theta)+c </math>
  
 
---[[User:Gbrizend|Gary Brizendine II]] 14:51, 7 October 2008 (UTC)
 
---[[User:Gbrizend|Gary Brizendine II]] 14:51, 7 October 2008 (UTC)

Revision as of 10:06, 7 October 2008

I'm going to give my even answers so far just to compare and see if everyone else is getting the same. Some are a little weird in my opinion. I used a calculator on a few too. -By the way, go here and make sure your preferences are set right so it makes these easier to read.

$ 38: \pi $

$ 48: x - \arctan{x} + c $

$ 50: -22.578 $

$ 56: \frac{\pi}{4} + \ln{2} $

$ 84 a) : -\cos(\theta)+\frac{1}{3}\cos^3(\theta)+c $

$ 84b) : -\cos(\theta)+\frac{2}{3}\cos^3(\theta)-\frac{1}{5}\cos^5(\theta)+c $

---Gary Brizendine II 14:51, 7 October 2008 (UTC)

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood