Line 11: Line 11:
 
b)
 
b)
  
f(x)=f$_{e}$(x)+f$_{0}$(x)
+
<math>f(x)=f$_{e}$(x)+f$_{0}$(x)</math>
  
f(-x)=f$_{e}$(-x)+f$_{0}$(-x)=f$_{e}$(x)-f$_{0}$(x)
+
<math>f(-x)=f$_{e}$(-x)+f$_{0}$(-x)=f$_{e}$(x)-f$_{0}$(x)</math>
  
solve for f$_{e}$(x) and f$_{0}$(x)
+
<math>solve for f$_{e}$(x) and f$_{0}$(x)</math>
  
f$_{e}$(x)= (f(x)+f(-x))/2
+
<math>f$_{e}$(x)= (f(x)+f(-x))/2</math>
  
f$_{0}$(x)= (f(x)-f(-x))/2
+
<math>f$_{0}$(x)= (f(x)-f(-x))/2</math>

Revision as of 07:41, 6 October 2008

a)

g(x)+h(x)=0

g(x) even h(x) odd

g is both even and odd

g(x)=g(-x)=-g(x)

b)

$ f(x)=f$_{e}$(x)+f$_{0}$(x) $

$ f(-x)=f$_{e}$(-x)+f$_{0}$(-x)=f$_{e}$(x)-f$_{0}$(x) $

$ solve for f$_{e}$(x) and f$_{0}$(x) $

$ f$_{e}$(x)= (f(x)+f(-x))/2 $

$ f$_{0}$(x)= (f(x)-f(-x))/2 $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood