(New page: First off, this is not part of homework. This equation (if I did it right) is the summation of an investment 'A' that gains interest over period 'p' and time 't' in years. The investment...)
 
Line 1: Line 1:
First off, this is not part of homework.  This equation (if I did it right) is the summation of an investment 'A' that gains interest over period 'p' and time 't' in years.  The investment 'A' is added every period.  I originally got <math> A \sum_{t=0}^{n} \frac{r^t}{p^{t}} dt </math>, but I wanted to turn it into an integral and pulled out a <math> \frac{p}{t} </math> so I would have a ''dt''.  That led me to the integral below.  Does it make sense and does anyone know how to integrate the problem?
+
First off, this is not part of homework.  This equation (if I did it right) is the summation of an investment 'A' that gains interest over period 'p' and time 't' in years.  The investment 'A' is added every period.  I originally got <math> A \sum_{t=0}^{n} \frac{r^t}{p^{t}} dt </math>, but I wanted to turn it into an integral and pulled out a <math> \frac{t}{p} </math> so I would have a ''dt''.  That led me to the integral below.  Does it make sense and does anyone know how to integrate the problem?
  
 
Integrate this:
 
Integrate this:

Revision as of 09:48, 2 October 2008

First off, this is not part of homework. This equation (if I did it right) is the summation of an investment 'A' that gains interest over period 'p' and time 't' in years. The investment 'A' is added every period. I originally got $ A \sum_{t=0}^{n} \frac{r^t}{p^{t}} dt $, but I wanted to turn it into an integral and pulled out a $ \frac{t}{p} $ so I would have a dt. That led me to the integral below. Does it make sense and does anyone know how to integrate the problem?

Integrate this:

$ A \int_{0}^{n} \frac{r^t}{t*p^{t-1}} dt $


I searched how to do it on matlab, but could not find it. Then, I found this website on Wolfram. It integrates it using mathematica. Here is what it got:

p*Ei(x(log(r)-log(p)))

Note: $ Ei(x) = \int_{-\infty}^{x} \frac{e^t}{t} dt $

I don't know how to use this integral, but I did some manipulation and got this:

$ Total = \frac{A[(r+1)^{t+1}-(r+1)]}{r} $

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics