Line 27: Line 27:
  
 
e.g. We can take <math>g_i(\mathbf(x)) = P(\omega_i|\mathbf(x))</math>
 
e.g. We can take <math>g_i(\mathbf(x)) = P(\omega_i|\mathbf(x))</math>
 +
 
then <math>g_i(\mathbf(x)) > g_j(\mathbf(x)), \forall j \neq i</math>
 
then <math>g_i(\mathbf(x)) > g_j(\mathbf(x)), \forall j \neq i</math>
 +
 +
<math>\Longleftrightarrow P(w_i|\mathbf(X)) > P(w_j|\mathbf(X)), \forall j \neq i </math>
 +
 +
'''OR''' we can take
 +
 +
<math>g_i(\mathbf(x)) = p(\mathbf(x)|\omega_i)P(\omega_i)</math>
 +
 +
then <math>g_i(\mathbf(x)) > g_j(\mathbf(x)), \forall j \neq i </math>
 +
 +
<math>\Longleftrightarrow g_i(\mathbf(x)) = ln(p(\mathbf(x)|\omega_i)P(\omega_i)) = ln(p(\mathbf(x)|\omega_i))+ln(P(\omega_i)</math>

Revision as of 14:46, 10 March 2008

ECE662 Main Page

Class Lecture Notes

LECTURE THEME : - Discriminant Functions

Discriminant Functions: one way of representing classifiers

Given the classes $ \omega_1, \cdots, \omega_k $

The discriminant functions $ g_1(x),\ldots, g_K(x) $ such that $ g_i(x) $ n-dim S space $ \rightarrow \Re $

which are used to make decisions as follows:

decide $ \omega_i $ if $ g_i(x) \ge g_j(x), \forall j $

Note that many different choices of $ g_i(x) $ will yield the same decision rule, because we are interested in the order of values of $ g_i(x) $ for each x, and not their exact values.

For example: $ g_i(x) \rightarrow 2(g_i(x)) $ or $ g_i(x) \rightarrow ln(g_i(x)) $

In other words, we can take $ g_i(x) \rightarrow f(g_i(x)) $ for any monotonically increasing function f.

Relation to Bayes Rule

e.g. We can take $ g_i(\mathbf(x)) = P(\omega_i|\mathbf(x)) $

then $ g_i(\mathbf(x)) > g_j(\mathbf(x)), \forall j \neq i $

$ \Longleftrightarrow P(w_i|\mathbf(X)) > P(w_j|\mathbf(X)), \forall j \neq i $

OR we can take

$ g_i(\mathbf(x)) = p(\mathbf(x)|\omega_i)P(\omega_i) $

then $ g_i(\mathbf(x)) > g_j(\mathbf(x)), \forall j \neq i $

$ \Longleftrightarrow g_i(\mathbf(x)) = ln(p(\mathbf(x)|\omega_i)P(\omega_i)) = ln(p(\mathbf(x)|\omega_i))+ln(P(\omega_i) $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett