Line 22: Line 22:
 
<math>g_i(x) \rightarrow 2(g_i(x))</math> or <math>g_i(x) \rightarrow ln(g_i(x))</math>
 
<math>g_i(x) \rightarrow 2(g_i(x))</math> or <math>g_i(x) \rightarrow ln(g_i(x))</math>
  
In other words, we can take <math>g_i(x) \rightarrow f(g_i(x))</math> for any monotonically increasing function f.
+
In other words, we can take <math>g_i(x) \rightarrow f(g_i(x))</math> for any monotonically increasing function ''f''.
 +
 
 +
'''Relation to Bayes Rule'''
 +
 
 +
e.g. We can take <math>g_i(\mathbf(x)) = P(\omega_i|\mathbf(x))</math>
 +
then <math>g_i(\mathbf(x)) > g_j(\mathbf(x)), \forall j \neq i</math>

Revision as of 14:43, 10 March 2008

ECE662 Main Page

Class Lecture Notes

LECTURE THEME : - Discriminant Functions

Discriminant Functions: one way of representing classifiers

Given the classes $ \omega_1, \cdots, \omega_k $

The discriminant functions $ g_1(x),\ldots, g_K(x) $ such that $ g_i(x) $ n-dim S space $ \rightarrow \Re $

which are used to make decisions as follows:

decide $ \omega_i $ if $ g_i(x) \ge g_j(x), \forall j $

Note that many different choices of $ g_i(x) $ will yield the same decision rule, because we are interested in the order of values of $ g_i(x) $ for each x, and not their exact values.

For example: $ g_i(x) \rightarrow 2(g_i(x)) $ or $ g_i(x) \rightarrow ln(g_i(x)) $

In other words, we can take $ g_i(x) \rightarrow f(g_i(x)) $ for any monotonically increasing function f.

Relation to Bayes Rule

e.g. We can take $ g_i(\mathbf(x)) = P(\omega_i|\mathbf(x)) $ then $ g_i(\mathbf(x)) > g_j(\mathbf(x)), \forall j \neq i $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva