m (Assignment Description: formatting)
(Data)
Line 43: Line 43:
  
 
=== Data ===
 
=== Data ===
Publicly available data sources are listed [[Data_Sources_OldKiwi|here]].
+
* Publicly available data sources are listed [[Data_Sources_OldKiwi|here]].
  
 +
* Simple perl script that converts data from the libsvm to the fann format. Allows you to quickly convert data if you're using the [FANN] and [LIBSVM].
  
 
== Matlab Code ==
 
== Matlab Code ==

Revision as of 07:42, 24 March 2008

Hw assignment 2

Assignment Description

[Official version: HTML PDF]

Due Tuesday April 1, 2008

Guidelines:

  • Write a short report to present your results.
  • Be sure to include all the relevant graphs as well as a copy of your code.
  • Teamwork is encouraged, but the write up of your report must be your own.
  • Please write the names of ALL your collaborators on the cover page of your report.

Question 1

In the Parametric Method section of the course, we learned how to draw a separation hyperplane between two classes by obtaining w0, the argmax of the cost function $ J(w)=w^TS_Bw / w^TS_ww $. The solution was found to be$ w_0= S_w^{-1}(m_1-m_2) $, where $ m_1 $ and $ m_2 $ are the sample means of each class, respectively.

Some students raised the question: can one simply use $ J(w)= w^TS_Bw $ instead (i.e. setting $ S_w $ as the identity matrix in the solution $ w_0 $? Investigate this question by numerical experimentation.


Question 2

Obtain a set of training data. Divide the training data into two sets. Use the first set as training data and the second set as test data.

a) Experiment with designing a classifier using the neural network approach.

b) Experiment with designing a classifier using the support vector machine approach.

c) Compare the two approaches.

Note: you may use code downloaded from the web, but if you do so, please be sure to explain what the code does in your report and give the reference.


Question 3

Using the same data as for question 2 (perhaps projected to one or two dimensions for better visualization),

a) Design a classifier using the Parzen window technique.

b) Design a classifier using the K-nearest neighbor technique

c) Design a classifier using the nearest neighbor technique.

d) Compare the three approaches.

Data

  • Publicly available data sources are listed here.
  • Simple perl script that converts data from the libsvm to the fann format. Allows you to quickly convert data if you're using the [FANN] and [LIBSVM].

Matlab Code

1. The contents are below

a). KNN classifiter

b). Classification using SVM

c). Demonstration of parzen window

d). Serval matlab codes realated to learning, clustering, and pattern classification]

2. KNN Classifier Matlab code

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood