(New page: ==Problems== ##If a discrete time singal x[n] is periodic with period N, then the Fourier series coefficients <math>a_k</math> of the signal x[n] is also periodic with period N. For the pe...)
 
Line 1: Line 1:
 
==Problems==
 
==Problems==
##If a discrete time singal x[n] is periodic with period N, then the Fourier series coefficients <math>a_k</math> of the signal x[n] is also periodic with period N. For the periodic signal x[n], find the values of <math>a_0,a_1,...,a_{N-1}.</math>  Express your answer in a + jb form.
+
1)a)If a discrete time singal x[n] is periodic with period N, then the Fourier series coefficients <math>a_k</math> of the signal x[n] is also periodic with period N. For the periodic signal x[n], find the values of <math>a_0,a_1,...,a_{N-1}.</math>  Express your answer in a + jb form.  
  
<math>x[n]=1-2je^{5+j(3pi/2*n+pi/4)}</math>
+
<math>x[n]=1 - 2je^{5+j(3\pi/2*n+\pi/4)}</math>
##
+
 
 +
1)b)
 
==Solutions==
 
==Solutions==
  
[[Category:ECE 301 San Summer 2008]]
+
1)a)
##Change the equation to look like a forier series.
+
Change the equation to look like a forier series. <math>x[n]=1-2je^{5+j(3\pi/2*n+\pi/4)}=</math>
 +
<math>x[n]=1 - 2je^{\pi/4}e^{5}e^{j(3\pi/2)*n}=</math>
 +
<math>x[n]=1 + (\sqrt{2}e^{5} - j\sqrt{2}e^5)e^{j(3\pi/2*n)}</math>
 +
 
 +
find the period N.  <math>\omega_0=3\pi/2</math>. <math>P=2\pi/\omega_0=4/3</math>.  The LCM of 1 and 4/3 is 12.  Therefore N=12
 +
 
 +
Choose values of <math>a_k</math> that match the forier series repersentation of x[n]
 +
 
 +
<math>x[n]=\sum_{k=<n>}^{}a_ke^{jk(2\pi/12)n}</math>
 +
 
 +
<math>a_0=1</math>
 +
 
 +
<math>a_9=\sqrt{2}e^{5} - j\sqrt{2}e^5</math>
 +
 
 +
 
 +
 
 
--[[User:Krtownse|Krtownse]] 15:53, 18 July 2008 (EDT)
 
--[[User:Krtownse|Krtownse]] 15:53, 18 July 2008 (EDT)
 +
[[Category:ECE 301 San Summer 2008]]

Revision as of 15:51, 18 July 2008

Problems

1)a)If a discrete time singal x[n] is periodic with period N, then the Fourier series coefficients $ a_k $ of the signal x[n] is also periodic with period N. For the periodic signal x[n], find the values of $ a_0,a_1,...,a_{N-1}. $ Express your answer in a + jb form.

$ x[n]=1 - 2je^{5+j(3\pi/2*n+\pi/4)} $

1)b)

Solutions

1)a) Change the equation to look like a forier series. $ x[n]=1-2je^{5+j(3\pi/2*n+\pi/4)}= $ $ x[n]=1 - 2je^{\pi/4}e^{5}e^{j(3\pi/2)*n}= $ $ x[n]=1 + (\sqrt{2}e^{5} - j\sqrt{2}e^5)e^{j(3\pi/2*n)} $

find the period N. $ \omega_0=3\pi/2 $. $ P=2\pi/\omega_0=4/3 $. The LCM of 1 and 4/3 is 12. Therefore N=12

Choose values of $ a_k $ that match the forier series repersentation of x[n]

$ x[n]=\sum_{k=<n>}^{}a_ke^{jk(2\pi/12)n} $

$ a_0=1 $

$ a_9=\sqrt{2}e^{5} - j\sqrt{2}e^5 $


--Krtownse 15:53, 18 July 2008 (EDT)

Alumni Liaison

EISL lab graduate

Mu Qiao