(New page: The case <math>\mu(X)=\infty</math> the inequality is true. Suppose <math>\mu(X)</math> is finite, we have Given <math>p^{'}=\frac{p+r}{2}</math>, <math>\int_{X}|f|^{r}d\mu = \int_{X}|f...)
 
Line 5: Line 5:
 
Given <math>p^{'}=\frac{p+r}{2}</math>,
 
Given <math>p^{'}=\frac{p+r}{2}</math>,
  
<math>\int_{X}|f|^{r}d\mu = \int_{X}|f|^{p^{'}}</math>
+
<math>\int_{X}|f|^{r}d\mu \leq \int_{X}|f|^{p^{'}}(\mu(X))^{1-r/p^{'}} \leq \int_{X}|f|^{p^{'}}(\mu(X))^{1-r/p}</math>

Revision as of 15:13, 11 July 2008

The case $ \mu(X)=\infty $ the inequality is true.

Suppose $ \mu(X) $ is finite, we have

Given $ p^{'}=\frac{p+r}{2} $,

$ \int_{X}|f|^{r}d\mu \leq \int_{X}|f|^{p^{'}}(\mu(X))^{1-r/p^{'}} \leq \int_{X}|f|^{p^{'}}(\mu(X))^{1-r/p} $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch