Line 11: Line 11:
 
<math>\int_{\{f_n>M\}}|f|\leq\int_{\{|f_n|>M,|f|<M-\epsilon\}}|f|+\int_{\{|f|>M-\epsilon\}}|f|</math>
 
<math>\int_{\{f_n>M\}}|f|\leq\int_{\{|f_n|>M,|f|<M-\epsilon\}}|f|+\int_{\{|f|>M-\epsilon\}}|f|</math>
  
<math>\,\,\,\leq\int_{\{|f-f_n|>\epsilon\}}|f|+\int_{|f|>M-\epsilon}|f|</math>
+
<math>\leq\int_{\{|f-f_n|>\epsilon\}}|f|+\int_{|f|>M-\epsilon}|f|</math>
 +
 
 +
<math>fn\to\limits^{L_1}f</math>

Revision as of 09:15, 2 July 2008

$ \sup\limits_n\int_{\{|f_n|>M\}}|f_n|\leq\sup\limits_n\int_{(0,1)}|f_n-f|+\sup\limits_n\int_{\{|f_n|>M\}}|f| $

$ Since \int_{(0,1)}|f_n-f|\to0(n\to\infty), \sup\limits_n\int_{(0,1)}|f_n-f|=0 $

Therefore, to show $ \sup\limits_n\int_{\{|f_n|>M\}}|f_n|\to0(M\to\infty), $it suffices to show that $ \sup\limits_n\int_{\{|f_n|>M\}}|f|\to0(M\to\infty) $

Actually,

$ \int_{\{f_n>M\}}|f|\leq\int_{\{|f_n|>M,|f|<M-\epsilon\}}|f|+\int_{\{|f|>M-\epsilon\}}|f| $

$ \leq\int_{\{|f-f_n|>\epsilon\}}|f|+\int_{|f|>M-\epsilon}|f| $

$ fn\to\limits^{L_1}f $

Alumni Liaison

EISL lab graduate

Mu Qiao