Line 9: | Line 9: | ||
Actually, | Actually, | ||
− | <math>\int_{\{f_n>M\}}|f|\leq\int_{\{|f_n|>M & |f|<M-\ | + | <math> |
+ | \int_{\{f_n>M\}}|f|\leq\int_{\{|f_n|>M & |f|<M-\epsilon\}}|f|+\int_{\{|f|>M-\epsilon\}}|f| | ||
+ | |||
+ | </math> |
Revision as of 09:07, 2 July 2008
$ \sup\limits_n\int_{\{|f_n|>M\}}|f_n|\leq\sup\limits_n\int_{(0,1)}|f_n-f|+\sup\limits_n\int_{\{|f_n|>M\}}|f| $
$ Since \int_{(0,1)}|f_n-f|\to0(n\to\infty), \sup\limits_n\int_{(0,1)}|f_n-f|=0 $
Therefore, to show $ \sup\limits_n\int_{\{|f_n|>M\}}|f_n|\to0(M\to\infty), $it suffices to show that $ \sup\limits_n\int_{\{|f_n|>M\}}|f|\to0(M\to\infty) $
Actually,
$ \int_{\{f_n>M\}}|f|\leq\int_{\{|f_n|>M & |f|<M-\epsilon\}}|f|+\int_{\{|f|>M-\epsilon\}}|f| $