Line 1: Line 1:
 +
#1
 +
 
<math>\int_{\{|f_n|>M\}}|f_n|\leq\int_{(0,1)}|f_n-f|+\int_{\{|f_n|>M\}}|f|</math>
 
<math>\int_{\{|f_n|>M\}}|f_n|\leq\int_{(0,1)}|f_n-f|+\int_{\{|f_n|>M\}}|f|</math>
  
<math>Since \int_{(0,1)}|f_n-f|\to0,</math>
+
<math>Since \int_{(0,1)}|f_n-f|\to0(n\to\infinity),</math>

Revision as of 08:50, 2 July 2008

  1. 1

$ \int_{\{|f_n|>M\}}|f_n|\leq\int_{(0,1)}|f_n-f|+\int_{\{|f_n|>M\}}|f| $

$ Since \int_{(0,1)}|f_n-f|\to0(n\to\infinity), $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood