Line 1: Line 1:
 
<math>\int_{\{|f_n|>M\}}|f_n|\leq\int_{(0,1)}|f_n-f|+\int_{\{|f_n|>M\}}|f|
 
<math>\int_{\{|f_n|>M\}}|f_n|\leq\int_{(0,1)}|f_n-f|+\int_{\{|f_n|>M\}}|f|
\\
+
\newline
 
Since \int_{(0,1)}|f_n-f|\to0,
 
Since \int_{(0,1)}|f_n-f|\to0,
 
</math>
 
</math>

Revision as of 08:47, 2 July 2008

$ \int_{\{|f_n|>M\}}|f_n|\leq\int_{(0,1)}|f_n-f|+\int_{\{|f_n|>M\}}|f| \newline Since \int_{(0,1)}|f_n-f|\to0, $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch