Line 1: Line 1:
<math>\int_{\{|f_n|>M\}}|f_n|\leq\int_{(0,1)}|f_n-f|+\int_{\{|f_n|>M\}}|f|//
+
<math>\int_{\{|f_n|>M\}}|f_n|\leq\int_{(0,1)}|f_n-f|+\int_{\{|f_n|>M\}}|f|
 +
\\
 
Since \int_{(0,1)}|f_n-f|\to0,
 
Since \int_{(0,1)}|f_n-f|\to0,
 
</math>
 
</math>

Revision as of 08:46, 2 July 2008

$ \int_{\{|f_n|>M\}}|f_n|\leq\int_{(0,1)}|f_n-f|+\int_{\{|f_n|>M\}}|f| \\ Since \int_{(0,1)}|f_n-f|\to0, $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett