Line 19: Line 19:
 
<math> z_k = \frac {2}{j} \left( \frac {1}{(k\pi)^2} \sin ( \frac {k\pi}{2} ) \right) * (1 - (-1)^k) ~~\forall ~k ~\ne ~0 </math>
 
<math> z_k = \frac {2}{j} \left( \frac {1}{(k\pi)^2} \sin ( \frac {k\pi}{2} ) \right) * (1 - (-1)^k) ~~\forall ~k ~\ne ~0 </math>
  
<math> g_o = \frac {2t_1m}{T_m} + \frac {2t_1n}{T_n} </math>
+
<math> g_o = \frac {2t_(1m)}{T_m} + \frac {2t_(1n)}{T_n} </math>

Revision as of 11:41, 1 July 2008

7b Old Kiwi.jpg

Let $ g(t) = \left ( \frac{dz}{dt} \right ) $

7b1 Old Kiwi.jpg 7b2 Old Kiwi.jpg

Therefore, $ m_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right) , n_k = \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) e^\frac{-j2k\pi2}{4} \right) $

But $ g_k = m_k + n_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right) + \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) e^\frac{-j2k\pi2}{4} \right) $

$ \therefore g_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right) + \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) (-1)^k \right) $

But we had taken the derivative of z(t) to get g(t) (and hence $ g_k $). $ \therefore z_k = \left ( \frac{g_k}{jk\omega_o} \right ) $

$ z_k = \left( \frac { \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) * (1 - (-1)^k) }{jk\pi/2} \right) $

$ z_k = \frac {2}{j} \left( \frac {1}{(k\pi)^2} \sin ( \frac {k\pi}{2} ) \right) * (1 - (-1)^k) ~~\forall ~k ~\ne ~0 $

$ g_o = \frac {2t_(1m)}{T_m} + \frac {2t_(1n)}{T_n} $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang