m |
|||
Line 5: | Line 5: | ||
[[Image:7b1_Old Kiwi.jpg]] | [[Image:7b1_Old Kiwi.jpg]] | ||
− | Therefore, <math> m_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{ | + | Therefore, <math> m_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right) |
+ | and n_k = \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) e^\frac{-j2k\pi2}{4} \right)</math> |
Revision as of 11:14, 1 July 2008
Let $ g(t) = \left ( \frac{dz}{dt} \right ) $
Therefore, $ m_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right) and n_k = \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) e^\frac{-j2k\pi2}{4} \right) $