Line 7: Line 7:
 
<math>\theta = arctan(\sqrt{3}/1) = arctan(\sqrt{3}) = \frac{\pi}{3}</math>
 
<math>\theta = arctan(\sqrt{3}/1) = arctan(\sqrt{3}) = \frac{\pi}{3}</math>
  
Therefore the polar form of this complex number is <math>2e^{j\frac{\pi}{3}}</math>
+
Therefore the polar form of this complex number is: <math>2e^{j\frac{\pi}{3}}</math>
 +
 
 +
B) <math> -5 </math>
 +
 
 +
<math> r = 5 </math>
 +
 
 +
<math> \theta = \pi </math>

Revision as of 00:11, 13 June 2008

Express each of the following complex numbers in polar form, and plot them in the complex plane, indicating the magnitude and angle of each number.

A) $ 1 + j\sqrt{3} $

$ r = \sqrt{1^2 + \sqrt{3}^2} = \sqrt{4} = 2 $

$ \theta = arctan(\sqrt{3}/1) = arctan(\sqrt{3}) = \frac{\pi}{3} $

Therefore the polar form of this complex number is: $ 2e^{j\frac{\pi}{3}} $

B) $ -5 $

$ r = 5 $

$ \theta = \pi $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett