Line 39: Line 39:
 
##[[Fourier Series Representation of CT periodic signals_Old Kiwi]]
 
##[[Fourier Series Representation of CT periodic signals_Old Kiwi]]
 
##[[Properties of CT Fourier Series_Old Kiwi]]
 
##[[Properties of CT Fourier Series_Old Kiwi]]
 +
#Lecture 11
 +
##[[Fourier Series Representation of CT periodic signals using properties_Old Kiwi]]
 +
##[[Fourier Series Representation of DT periodic signals_Old Kiwi]]
 +
#Lecture 12
 +
##[[Properties of discrete time Fourier Series_Old Kiwi]]
 +
##[[Fourier Series and LTI Systems_Old Kiwi]]
 +
#Lecture 13
 +
##[[CT Fourier Transform_Old Kiwi]]
 +
#Lecture 14
 +
##[[Convergence of Fourier Transform_Old Kiwi]]
 +
##[[Fourier Transform of periodic signals_Old Kiwi]]
 +
##[[Properties of Continuous Fourier Transforms_Old Kiwi]]
 +
#Lecture 15
 +
##[[Applications of Convolution Property_Old Kiwi]]
 +
##[[Applications of Multiplication Property_Old Kiwi]]
 +
##[[Frequency selective filtering_Old Kiwi]]
 +
  
 
== Homework Problems ==
 
== Homework Problems ==

Revision as of 20:12, 1 July 2008

General Course Information

ECE 301

Summer 2008

Instructor: Aung Kyi San

Lecture: M T W Th F 9:50 am - 10:50 am @ EE 117

Office Hours: M W 11:00 am - 12:00 am

Main Topics of the Course

  1. Lecture 1
    1. Signal Energy and Power_Old Kiwi
    2. Transformation of the independent variable_Old Kiwi
  2. Lecture 2
    1. Periodic Signals_Old Kiwi
    2. Even and Odd Signals_Old Kiwi
    3. Exponential and Sinusoidal signals (CT)_Old Kiwi
  3. Lecture 3
    1. Exponential and Sinusoidal signals (DT)_Old Kiwi
    2. The unit impulse and unit step functions_Old Kiwi
  4. Lecture 4
    1. Continuous-Time and Discrete-Time_Old Kiwi
    2. Basic System Properties_Old Kiwi
  5. Lecture 5
    1. DT LTI systems: The convolution sum_Old Kiwi
  6. Lecture 6
    1. CT LTI systems: The convolution integral_Old Kiwi
  7. Lecture 7
    1. Properties of LTI systems_Old Kiwi
    2. Unit step response of an LTI system_Old Kiwi
  8. Lecture 8
  9. Lecture 9
    1. Response of LTI systems to complex exponentials_Old Kiwi
    2. Fourier Series representation of continuous-time periodic signals_Old Kiwi
  10. Lecture 10
    1. Fourier Series Representation of CT periodic signals_Old Kiwi
    2. Properties of CT Fourier Series_Old Kiwi
  11. Lecture 11
    1. Fourier Series Representation of CT periodic signals using properties_Old Kiwi
    2. Fourier Series Representation of DT periodic signals_Old Kiwi
  12. Lecture 12
    1. Properties of discrete time Fourier Series_Old Kiwi
    2. Fourier Series and LTI Systems_Old Kiwi
  13. Lecture 13
    1. CT Fourier Transform_Old Kiwi
  14. Lecture 14
    1. Convergence of Fourier Transform_Old Kiwi
    2. Fourier Transform of periodic signals_Old Kiwi
    3. Properties of Continuous Fourier Transforms_Old Kiwi
  15. Lecture 15
    1. Applications of Convolution Property_Old Kiwi
    2. Applications of Multiplication Property_Old Kiwi
    3. Frequency selective filtering_Old Kiwi


Homework Problems

  1. Homework 1 - Summer 08_Old Kiwi
  2. Homework 2 - Summer 08_Old Kiwi
  3. Homework 3 - Summer 08_Old Kiwi
  4. Homework 4 - Missing 3.28 & 4.4b_Old Kiwi
  5. Homework 4 - 4.4b_Old Kiwi

Bonus Problems

  1. Bonus 2 - Summer 08_Old Kiwi
  2. Bonus 3 - Exam I_Old Kiwi
  3. Bonus 5 - Exam I_Old Kiwi

Other Topics

Add other relevent/interesting pages here:

You can use latex in Kiwi, here is a Latex Cheat Sheet

  1. Practice Problems - Exam 1_Old Kiwi
  2. Exam 1 Formula's_Old Kiwi

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood