(New page: From landis.m.huffman.1 Tue Feb 12 21:31:30 -0500 2008 From: landis.m.huffman.1 Date: Tue, 12 Feb 2008 21:31:30 -0500 Subject: Tutorial Message-ID: <20080212213130-0500@https://engineering...)
 
Line 7: Line 7:
 
I, for one, did not know how to do this, so I looked into it so that you don't have to now.
 
I, for one, did not know how to do this, so I looked into it so that you don't have to now.
  
 
+
<math> </math>
.. |aat| image:: tex
+
{ Summary:  To generate "colored" samples <math>\tilde{x}\in\mathbb{R}^n \sim \mathcal{N}(\mu,\Sigma)</math> from "white" samples <math>x</math> drawn from <math>\mathcal{N}(\vec{0},I_n)</math>, simply let <math>\tilde{x} = Ax + \mu</math>, where <math>A</math> is the Cholesky decomposition of <math>\Sigma</math>, i.e. <math>\Sigma = AA^T</math>}
  :alt: tex:  \Sigma = AA^T
+
 
+
{ Summary:  To generate samples |xdist| from samples |x| drawn from |normdist|, simply let |xxtildrel|, where |A| is the Cholesky decomposition of |sig|, i.e. |aat|}
+
  
 
Consider generating samples |xdist|.  Many platforms (e.g. Matlab) have a random number generator to generate iid samples from (white) Gaussian distribution.  If we seek to "color" the noise with an arbitrary covariance matrix |sig|, we must produce a "coloring matrix" |A|.  Let us consider generating a colored sample |xtildfull| from |xfull|, where |xiid| are iid samples drawn from |1Dnormdist|.  (Note:  Matlab has a function, mvnrnd.m, to sample from |normdistarb|, but I discuss here the theory behind it).  Relate |xtild| to |x| as follows:
 
Consider generating samples |xdist|.  Many platforms (e.g. Matlab) have a random number generator to generate iid samples from (white) Gaussian distribution.  If we seek to "color" the noise with an arbitrary covariance matrix |sig|, we must produce a "coloring matrix" |A|.  Let us consider generating a colored sample |xtildfull| from |xfull|, where |xiid| are iid samples drawn from |1Dnormdist|.  (Note:  Matlab has a function, mvnrnd.m, to sample from |normdistarb|, but I discuss here the theory behind it).  Relate |xtild| to |x| as follows:
Line 38: Line 35:
  
 
Thus, to summarize, to generate samples |xdist| from samples |x| drawn from |normdist|, simply let |xxtildrel|, where |A| is the Cholesky decomposition of |sig|.
 
Thus, to summarize, to generate samples |xdist| from samples |x| drawn from |normdist|, simply let |xxtildrel|, where |A| is the Cholesky decomposition of |sig|.
 +
 +
.. |aat| image:: tex
 +
:alt: tex:  \Sigma = AA^T
  
 
.. |xdist| image:: tex
 
.. |xdist| image:: tex
  :alt: tex: \tilde{x}\in\mathbb{R}^n \sim \mathcal{N}(\mu,\Sigma)
+
:alt: tex: \tilde{x}\in\mathbb{R}^n \sim \mathcal{N}(\mu,\Sigma)
  
 
.. |sig| image:: tex
 
.. |sig| image:: tex
  :alt: tex: \Sigma
+
:alt: tex: \Sigma
  
 
.. |signm| image:: tex
 
.. |signm| image:: tex
  :alt: tex: \Sigma_{nm}
+
:alt: tex: \Sigma_{nm}
  
 
.. |A| image:: tex
 
.. |A| image:: tex
  :alt: tex: A
+
:alt: tex: A
  
 
.. |xtildfull| image:: tex
 
.. |xtildfull| image:: tex
  :alt: tex: \tilde{x} = [\tilde{x}_1,\tilde{x}_2,\ldots,\tilde{x}_n]^T
+
:alt: tex: \tilde{x} = [\tilde{x}_1,\tilde{x}_2,\ldots,\tilde{x}_n]^T
  
 
.. |xfull| image:: tex
 
.. |xfull| image:: tex
  :alt: tex: x = [x_1,x_2,\ldots,x_n]^T
+
:alt: tex: x = [x_1,x_2,\ldots,x_n]^T
  
 
.. |xiid| image:: tex
 
.. |xiid| image:: tex
  :alt: tex: x_1, x_2, \ldots, x_n
+
:alt: tex: x_1, x_2, \ldots, x_n
  
 
.. |1Dnormdist| image:: tex
 
.. |1Dnormdist| image:: tex
  :alt: tex: \mathcal{N}(0,1)
+
:alt: tex: \mathcal{N}(0,1)
  
 
.. |normdist| image:: tex
 
.. |normdist| image:: tex
  :alt: tex: \mathcal{N}(\vec{0},I_n)
+
:alt: tex: \mathcal{N}(\vec{0},I_n)
  
 
.. |normdistarb| image:: tex
 
.. |normdistarb| image:: tex
  :alt: tex: \mathcal{N}(\mu,\Sigma)
+
:alt: tex: \mathcal{N}(\mu,\Sigma)
  
 
.. |x| image:: tex
 
.. |x| image:: tex
  :alt: tex: x
+
:alt: tex: x
  
 
.. |xtild| image:: tex
 
.. |xtild| image:: tex
  :alt: tex: \tilde{x}
+
:alt: tex: \tilde{x}
  
 
.. |xxtild1| image:: tex
 
.. |xxtild1| image:: tex
  :alt: tex: \tilde{x}_1 = a_{11} x_1,
+
:alt: tex: \tilde{x}_1 = a_{11} x_1,
  
 
.. |xxtild2| image:: tex
 
.. |xxtild2| image:: tex
  :alt: tex: \tilde{x}_2 = a_{21} x_1  + a_{22} x_2,\ldots
+
:alt: tex: \tilde{x}_2 = a_{21} x_1  + a_{22} x_2,\ldots
  
 
.. |xxtildn| image:: tex
 
.. |xxtildn| image:: tex
  :alt: tex: \tilde{x}_n = \sum_{i=1}^n a_{ni}x_i
+
:alt: tex: \tilde{x}_n = \sum_{i=1}^n a_{ni}x_i
  
 
.. |xxtildMat| image:: tex
 
.. |xxtildMat| image:: tex
  :alt: tex: \tilde{x} = Ax
+
:alt: tex: \tilde{x} = Ax
  
 
.. |xxtildrel| image:: tex
 
.. |xxtildrel| image:: tex
  :alt: tex: \tilde{x} = Ax + \mu
+
:alt: tex: \tilde{x} = Ax + \mu
  
 
.. |E(n)| image:: tex
 
.. |E(n)| image:: tex
  :alt: tex: E[\tilde{x}_n] = \sum_{i=1}^n a_{ni}E[x_i] = 0
+
:alt: tex: E[\tilde{x}_n] = \sum_{i=1}^n a_{ni}E[x_i] = 0
  
 
.. |Cov(n,m)def| image:: tex
 
.. |Cov(n,m)def| image:: tex
  :alt: tex: Cov[\tilde{x}_n,\tilde{x}_m] = E\left[\left(\sum_{i=1}^na_{ni}x_i\right)\left(\sum_{j=1}^m a_{mj}x_j\right)\right] = \sum_{i=1}^n\sum_{j=1}^m a_{ni}a_{mj}E[x_ix_j] \Rightarrow  
+
:alt: tex: Cov[\tilde{x}_n,\tilde{x}_m] = E\left[\left(\sum_{i=1}^na_{ni}x_i\right)\left(\sum_{j=1}^m a_{mj}x_j\right)\right] = \sum_{i=1}^n\sum_{j=1}^m a_{ni}a_{mj}E[x_ix_j] \Rightarrow
  
 
.. |Cov(n,m)deffinal| image:: tex
 
.. |Cov(n,m)deffinal| image:: tex
  :alt: tex: \sum_{i=1}^{\min(m,n)}a_{ni}a_{mi}
+
:alt: tex: \sum_{i=1}^{\min(m,n)}a_{ni}a_{mi}
  
 
.. |Cov(n,m)| image:: tex
 
.. |Cov(n,m)| image:: tex
  :alt: tex: Cov(\tilde{x}_n,\tilde{x}_m)
+
:alt: tex: Cov(\tilde{x}_n,\tilde{x}_m)
  
 
.. |xi| image:: tex
 
.. |xi| image:: tex
  :alt: tex: x_i
+
:alt: tex: x_i
  
 
.. |xivar| image:: tex
 
.. |xivar| image:: tex
  :alt: tex: Var[x_i] = 1
+
:alt: tex: Var[x_i] = 1
  
 
.. |ximean| image:: tex
 
.. |ximean| image:: tex
  :alt: tex: E[x_i] = 0
+
:alt: tex: E[x_i] = 0
  
 
.. |ani| image:: tex
 
.. |ani| image:: tex
  :alt: tex: a_{ni}
+
:alt: tex: a_{ni}
  
 
.. |sigrelation| image:: tex
 
.. |sigrelation| image:: tex
  :alt: tex: \Rightarrow \Sigma = AA^T
+
:alt: tex: \Rightarrow \Sigma = AA^T

Revision as of 14:34, 20 March 2008

From landis.m.huffman.1 Tue Feb 12 21:31:30 -0500 2008 From: landis.m.huffman.1 Date: Tue, 12 Feb 2008 21:31:30 -0500 Subject: Tutorial Message-ID: <20080212213130-0500@https://engineering.purdue.edu>

I, for one, did not know how to do this, so I looked into it so that you don't have to now.


{ Summary: To generate "colored" samples $ \tilde{x}\in\mathbb{R}^n \sim \mathcal{N}(\mu,\Sigma) $ from "white" samples $ x $ drawn from $ \mathcal{N}(\vec{0},I_n) $, simply let $ \tilde{x} = Ax + \mu $, where $ A $ is the Cholesky decomposition of $ \Sigma $, i.e. $ \Sigma = AA^T $}

Consider generating samples |xdist|. Many platforms (e.g. Matlab) have a random number generator to generate iid samples from (white) Gaussian distribution. If we seek to "color" the noise with an arbitrary covariance matrix |sig|, we must produce a "coloring matrix" |A|. Let us consider generating a colored sample |xtildfull| from |xfull|, where |xiid| are iid samples drawn from |1Dnormdist|. (Note: Matlab has a function, mvnrnd.m, to sample from |normdistarb|, but I discuss here the theory behind it). Relate |xtild| to |x| as follows:

|xxtild1|

|xxtild2|

|xxtildn|.

We can rewrite this in matrix form as |xxtildMat|, where matrix |A| is lower triangular. We have, then, that

|E(n)|, and

|Cov(n,m)def|

|Cov(n,m)| = |Cov(n,m)deffinal|, since |xi|'s are independent, |ximean| and |xivar|

|xivar|.

We are now left with the problem of defining |ani|'s so that the form of |Cov(n,m)| follows the form of |signm|: i.e.

|signm| = |Cov(n,m)| = |Cov(n,m)deffinal|

|sigrelation|, where |A| is lower triangular, and |sig| is positive definite. Therefore, |A| follows the form of what is called the Cholesky decomposition of |sig|.

Thus, to summarize, to generate samples |xdist| from samples |x| drawn from |normdist|, simply let |xxtildrel|, where |A| is the Cholesky decomposition of |sig|.

.. |aat| image:: tex

alt: tex: \Sigma = AA^T

.. |xdist| image:: tex

alt: tex: \tilde{x}\in\mathbb{R}^n \sim \mathcal{N}(\mu,\Sigma)

.. |sig| image:: tex

alt: tex: \Sigma

.. |signm| image:: tex

alt: tex: \Sigma_{nm}

.. |A| image:: tex

alt: tex: A

.. |xtildfull| image:: tex

alt: tex: \tilde{x} = [\tilde{x}_1,\tilde{x}_2,\ldots,\tilde{x}_n]^T

.. |xfull| image:: tex

alt: tex: x = [x_1,x_2,\ldots,x_n]^T

.. |xiid| image:: tex

alt: tex: x_1, x_2, \ldots, x_n

.. |1Dnormdist| image:: tex

alt: tex: \mathcal{N}(0,1)

.. |normdist| image:: tex

alt: tex: \mathcal{N}(\vec{0},I_n)

.. |normdistarb| image:: tex

alt: tex: \mathcal{N}(\mu,\Sigma)

.. |x| image:: tex

alt: tex: x

.. |xtild| image:: tex

alt: tex: \tilde{x}

.. |xxtild1| image:: tex

alt: tex: \tilde{x}_1 = a_{11} x_1,

.. |xxtild2| image:: tex

alt: tex: \tilde{x}_2 = a_{21} x_1 + a_{22} x_2,\ldots

.. |xxtildn| image:: tex

alt: tex: \tilde{x}_n = \sum_{i=1}^n a_{ni}x_i

.. |xxtildMat| image:: tex

alt: tex: \tilde{x} = Ax

.. |xxtildrel| image:: tex

alt: tex: \tilde{x} = Ax + \mu

.. |E(n)| image:: tex

alt: tex: E[\tilde{x}_n] = \sum_{i=1}^n a_{ni}E[x_i] = 0

.. |Cov(n,m)def| image:: tex

alt: tex: Cov[\tilde{x}_n,\tilde{x}_m] = E\left[\left(\sum_{i=1}^na_{ni}x_i\right)\left(\sum_{j=1}^m a_{mj}x_j\right)\right] = \sum_{i=1}^n\sum_{j=1}^m a_{ni}a_{mj}E[x_ix_j] \Rightarrow

.. |Cov(n,m)deffinal| image:: tex

alt: tex: \sum_{i=1}^{\min(m,n)}a_{ni}a_{mi}

.. |Cov(n,m)| image:: tex

alt: tex: Cov(\tilde{x}_n,\tilde{x}_m)

.. |xi| image:: tex

alt: tex: x_i

.. |xivar| image:: tex

alt: tex: Var[x_i] = 1

.. |ximean| image:: tex

alt: tex: E[x_i] = 0

.. |ani| image:: tex

alt: tex: a_{ni}

.. |sigrelation| image:: tex

alt: tex: \Rightarrow \Sigma = AA^T

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva