(Chapter Notes)
Line 1: Line 1:
 
==LTI Systems==
 
==LTI Systems==
  
==Chapter Notes==
+
==Chapter 2 Class Notes==
 +
 
 +
[[ECE_Ch2_pt1.pdf _Old Kiwi| part 1]]
 +
 
 +
[[ECE_Ch2_pt2.pdf _Old Kiwi| part 2]]
 +
 
 +
[[ECE_Ch2_pt3.pdf _Old Kiwi| part 3]]
  
 
==Convolution Example==
 
==Convolution Example==

Revision as of 19:56, 16 March 2008

LTI Systems

Chapter 2 Class Notes

part 1

part 2

part 3

Convolution Example

This is an example of convolution done two ways on a fairly simple general signal.

x(t) = u(t)

h(t) = $ {e}^{-\alpha t}u(t) $, \alpha > 0

Now, to convolute them...

1. $ y(t) = x(t)*h(t) = \int_{-\infty}^{\infty}x(\tau)h(t-\tau)d\tau $

2. $ y(t) = \int_{-\infty}^{\infty}u(\tau){e}^{-\alpha (t-\tau)}u(t-\tau)d\tau $

Since $ u(\tau)*u(t-\tau) $ = 0 when t < 0, also when $ \tau > t $, you can set the limit accordingly. Keep in mind the following steps (4&5) are for t > 0, else the function is equal to 0.

3. $ y(t) = \int_{0}^{t} {e}^{-\alpha (t-\tau)}d\tau = {e}^{-\alpha t} \int_{0}^{t}{e}^{ \alpha \tau}d\tau $

4. $ y(t) = {e}^{-\alpha t}\frac{1}{\alpha}({e}^{\alpha t}-1) = \frac{1}{\alpha}(1-{e}^{-\alpha t}) $

Now you can replace the condition in steps 4&5 with a u(t).

5. $ y(t) = \frac{1}{\alpha}(1-{e}^{-\alpha t})u(t) $

Now, the other way... (by the commutative property)

1. $ y(t) = h(t)*x(t) = \int_{-\infty}^{\infty}h(\tau)x(t-\tau)d\tau $

2. $ y(t) = \int_{-\infty}^{\infty}{e}^{-\alpha (\tau)}u(\tau)u(t-\tau)d\tau $

Since $ u(\tau)*u(t-\tau) $ = 0 when t < 0, also when $ \tau > t $, you can set the limit accordingly. Keep in mind the following step (4) is for t > 0, else the function is equal to 0.

3. $ y(t) = \int_{0}^{t} {e}^{-\alpha \tau}d\tau = \frac{1}{\alpha}(1-{e}^{-\alpha t}) $

Now you can replace the condition in step 4 with a u(t).

4. $ y(t) = \frac{1}{\alpha}(1-{e}^{-\alpha t})u(t) $

End

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva