Line 1: Line 1:
 
 
==Maximum Likelihood Estimation (ML)==
 
==Maximum Likelihood Estimation (ML)==
 
<math>\hat a_{ML} = \text{max}_a ( f_{X}(x_i;a))</math> continuous
 
<math>\hat a_{ML} = \text{max}_a ( f_{X}(x_i;a))</math> continuous
Line 48: Line 47:
 
Likelihood Ratio TEST ==
 
Likelihood Ratio TEST ==
  
<math>\ L(x) = P_(X|\theta) (x|\theta1) / P_(X|\theta) (x|\theta1)  
+
<math> L(x) = P_(X|\theta) (x|\theta1) / P_(X|\theta) (x|\theta1) </math>
  
 
==Hypothesis Testing: MAP Rule==
 
==Hypothesis Testing: MAP Rule==
  
 
Overall P(err) = <math>P_{\theta}(\theta_{0})Pr[Say H_{1}|H_{0}]+P_{\theta}(\theta_{1})Pr[Say H_{0}|H_{1}]</math>
 
Overall P(err) = <math>P_{\theta}(\theta_{0})Pr[Say H_{1}|H_{0}]+P_{\theta}(\theta_{1})Pr[Say H_{0}|H_{1}]</math>

Revision as of 11:27, 13 December 2008

Maximum Likelihood Estimation (ML)

$ \hat a_{ML} = \text{max}_a ( f_{X}(x_i;a)) $ continuous

$ \hat a_{ML} = \text{max}_a ( Pr(x_i;a)) $ discrete

Maximum A-Posteriori Estimation (MAP)

$ \hat \theta_{MAP}(x) = \text{arg max}_\theta P_{X|\theta}(x|\theta)P_ {\theta}(\theta) $

$ \hat \theta_{MAP}(x) = \text{arg max}_\theta f_{X|\theta}(x|\theta)P_ {\theta}(\theta) $

Minimum Mean-Square Estimation (MMSE)

$ \hat{y}_{\rm MMSE}(x) = \int\limits_{-\infty}^{\infty}\ {y}{f}_{\rm Y|X}(y|x)\, dy={E}(Y|X=x) $


Law Of Iterated Expectation

Unconditional Expectaion--E[X] = E{E[x|theta]}--Umang 16:10, 13 December 2008 (UTC)umang


Mean square error :

Headline text

$ MSE = E[(\theta - \hat \theta(x))^2] $

Linear Minimum Mean-Square Estimation (LMMSE)

$ \hat{y}_{\rm LMMSE}(x) = E[\theta]+\frac{COV(x,\theta)}{Var(x)}*(x-E[x]) $

Hypothesis Testing: ML Rule

Given a value of X, we will say H1 is true if X is in region R, else will will say H0 is true.

Type I error

Say H1 when truth is H0. Probability of this is: Pr(Say H1|H0) = Pr(X is in R|theta0)

Type II error

Say H0 when truth is H1. Probability of this is: Pr(Say H0|H1) = Pr(X is NOT in R|theta1)

== How to find a good rule? Likelihood Ratio TEST ==

$ L(x) = P_(X|\theta) (x|\theta1) / P_(X|\theta) (x|\theta1) $

Hypothesis Testing: MAP Rule

Overall P(err) = $ P_{\theta}(\theta_{0})Pr[Say H_{1}|H_{0}]+P_{\theta}(\theta_{1})Pr[Say H_{0}|H_{1}] $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett