(Maximum Likelihood Estimation (ML))
(Maximum Likelihood Estimation (ML))
Line 3: Line 3:
  
 
<math>\hat a_{ML} = \text{max}_a ( Pr(x_i;a))</math> discrete
 
<math>\hat a_{ML} = \text{max}_a ( Pr(x_i;a))</math> discrete
 
 
If X is a binomial (n,p), where is X is number of heads n tosses,
 
Then, for any fixed k-value;
 
 
<math>\hat p_{ML}(k) = k/n</math>
 
 
If X is exponential then it's ML estimate is:
 
 
<math> \frac{1}{ \overline{X}} </math>
 
  
 
==Maximum A-Posteriori Estimation (MAP)==
 
==Maximum A-Posteriori Estimation (MAP)==

Revision as of 03:10, 12 December 2008

Maximum Likelihood Estimation (ML)

$ \hat a_{ML} = \text{max}_a ( f_{X}(x_i;a)) $ continuous

$ \hat a_{ML} = \text{max}_a ( Pr(x_i;a)) $ discrete

Maximum A-Posteriori Estimation (MAP)

Minimum Mean-Square Estimation (MMSE)

$ \hat{y}_{\rm MMSE}(x) = \int\limits_{-\infty}^{\infty}\ {y}{f}_{\rm Y|X}(y|x)\, dy={E}(Y|X=x) $

Mean square error : $ MSE = E[(\theta - \hat \theta(x))^2] $

Linear Minimum Mean-Square Estimation (LMMSE)

$ \hat{y}_{\rm LMMSE}(x) = E[\theta]+\frac{COV(x,\theta)}{Var(x)}*(x-E[x]) $

Hypothesis Testing: ML Rule

Type I error

Type II error

Hypothesis Testing: MAP Rule

Overall P(err)

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett