Line 5: Line 5:
 
==Minimum Mean-Square Estimation (MMSE)==
 
==Minimum Mean-Square Estimation (MMSE)==
  
<math>\hat{y}_{\rm MMSE}(x) \int\limits_{-\infty}^{\infty}\ {y}{f}_{\rm y|x}(Y|X=x)\, dy={E}(Y|X=x)</math>
+
<math>\hat{y}_{\rm MMSE}(x) = \int\limits_{-\infty}^{\infty}\ {y}{f}_{\rm y|x}(Y|X=x)\, dy={E}(Y|X=x)</math>
 
+
 
+
<math>\hat{y}_{\rm LMMSE}(x)=E[\theta]+\frac{COV(x,\theta)}{Var(x)}*(x-E[x])</math>
+
 
+
  
 
Mean square error : <math>MSE = E[(\theta - \hat \theta(x))^2]</math>
 
Mean square error : <math>MSE = E[(\theta - \hat \theta(x))^2]</math>
  
 
==Linear Minimum Mean-Square Estimation (LMMSE)==
 
==Linear Minimum Mean-Square Estimation (LMMSE)==
 +
 +
<math>\hat{y}_{\rm LMMSE}(x) = E[\theta]+\frac{COV(x,\theta)}{Var(x)}*(x-E[x])</math>
  
 
==Hypothesis Testing: ML Rule==
 
==Hypothesis Testing: ML Rule==

Revision as of 15:38, 11 December 2008

Maximum Likelihood Estimation (ML)

Maximum A-Posteriori Estimation (MAP)

Minimum Mean-Square Estimation (MMSE)

$ \hat{y}_{\rm MMSE}(x) = \int\limits_{-\infty}^{\infty}\ {y}{f}_{\rm y|x}(Y|X=x)\, dy={E}(Y|X=x) $

Mean square error : $ MSE = E[(\theta - \hat \theta(x))^2] $

Linear Minimum Mean-Square Estimation (LMMSE)

$ \hat{y}_{\rm LMMSE}(x) = E[\theta]+\frac{COV(x,\theta)}{Var(x)}*(x-E[x]) $

Hypothesis Testing: ML Rule

Type I error

Type II error

Hypothesis Testing: MAP Rule

Overall P(err)

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal