Line 1: Line 1:
 
This page and its subtopics discusses about Support Vector Machines
 
This page and its subtopics discusses about Support Vector Machines
  
Lectures discussing Support Vector Machines: [[Lecture 11 - Fischer's Linear Discriminant again_Old Kiwi|Lecture11]], [[Lecture 12 - Support Vector Machine and Quadratic Optimization Problem_Old Kiwi|Lecture12]] and [[Lecture 13 - Kernel function for SVMs and ANNs introduction_Old Kiwi|Lecture13]]
+
Lectures discussing Support Vector Machines: [[Lecture 11 - Fischer's Linear Discriminant again_Old Kiwi|Lecture11]], [[Lecture 12 - Support Vector Machine and Quadratic Optimization Problem_Old Kiwi|Lecture12]] and [[Lecture 13 - Kernel function for SVMs and ANNs introduction_Old Kiwi|Lecture13]].
  
 
* Other related  sites:
 
* Other related  sites:

Revision as of 12:55, 22 March 2008

This page and its subtopics discusses about Support Vector Machines

Lectures discussing Support Vector Machines: Lecture11, Lecture12 and Lecture13.

  • Other related sites:

`A Tutorial on Support Vector Machines for Pattern Recognition <http://citeseer.ist.psu.edu/cache/papers/cs/26235/http:zSzzSzwww.isi.uu.nlzSzMeetingszSz..zSzTGVzSzfinal1.pdf/burges98tutorial.pdf>`_

`Support Vector Machines for 3D Object Recognition <http://ieeexplore.ieee.org/iel4/34/15030/00683777.pdf?isnumber=15030&prod=JNL&arnumber=683777&arSt=637&ared=646&arAuthor=Pontil%2C+M.%3B+Verri%2C+A.>`_

Here is a good webpage containing links to effective Support Vector Machines packages, written in C/C++. Matlab, applicable for binary/multi- calss classifications. <http://www.svms.org/software.html>

Purdue link: http://www2.lib.purdue.edu:2483/10.1145/130385.130401

ACM link: http://doi.acm.org/10.1145/130385.130401

  • Journal References

M.A. Aizerman, E.M. Braverman, L.I. Rozoner. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Control, 1964, Vol. 25, pp. 821-837.

Bernhard E. Boser and Isabelle M. Guyon and Vladimir N. Vapnik. A training algorithm for optimal margin classifiers. COLT '92: Proceedings of the fifth annual workshop on Computational learning theory. 1992. Pittsburgh, PA.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett