Line 1: Line 1:
 
<math>{y}_{\rm LMMSE}(x)=E[\theta]+\frac{COV(x,\theta)}{Var(x)}*(x-E[x])</math>
 
<math>{y}_{\rm LMMSE}(x)=E[\theta]+\frac{COV(x,\theta)}{Var(x)}*(x-E[x])</math>
 +
 +
 +
----
 +
 +
 +
Question posed by Nicholas Browdues
 +
 +
 +
It's true that
 +
 +
<math>E[XY]= \iint\limits_D xy f_{xy}(x,y)\, dx\,dy= \frac{4}{3} \int_{0}^{1}y (\int_{0}^{1} dx) dy =\frac{1}{3}</math>
 +
   
 +
right?

Revision as of 17:02, 9 December 2008

$ {y}_{\rm LMMSE}(x)=E[\theta]+\frac{COV(x,\theta)}{Var(x)}*(x-E[x]) $




Question posed by Nicholas Browdues


It's true that

$ E[XY]=	\iint\limits_D xy f_{xy}(x,y)\, dx\,dy=	\frac{4}{3} \int_{0}^{1}y (\int_{0}^{1} dx) dy =\frac{1}{3} $
    
right?

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett