Line 1: | Line 1: | ||
<math>{y}_{\rm LMMSE}(x)=E[\theta]+\frac{COV(x,\theta)}{Var(x)}*(x-E[x])</math> | <math>{y}_{\rm LMMSE}(x)=E[\theta]+\frac{COV(x,\theta)}{Var(x)}*(x-E[x])</math> | ||
+ | |||
+ | |||
+ | ---- | ||
+ | |||
+ | |||
+ | Question posed by Nicholas Browdues | ||
+ | |||
+ | |||
+ | It's true that | ||
+ | |||
+ | <math>E[XY]= \iint\limits_D xy f_{xy}(x,y)\, dx\,dy= \frac{4}{3} \int_{0}^{1}y (\int_{0}^{1} dx) dy =\frac{1}{3}</math> | ||
+ | |||
+ | right? |
Revision as of 17:02, 9 December 2008
$ {y}_{\rm LMMSE}(x)=E[\theta]+\frac{COV(x,\theta)}{Var(x)}*(x-E[x]) $
Question posed by Nicholas Browdues
It's true that
$ E[XY]= \iint\limits_D xy f_{xy}(x,y)\, dx\,dy= \frac{4}{3} \int_{0}^{1}y (\int_{0}^{1} dx) dy =\frac{1}{3} $
right?