Line 1: Line 1:
 +
[[Category:ECE302Fall2008_ProfSanghavi]]
 +
[[Category:probabilities]]
 +
[[Category:ECE302]]
 +
[[Category:problem solving]]
 +
 
<math>\theta </math> is uniform [0,1]
 
<math>\theta </math> is uniform [0,1]
  
Line 12: Line 17:
  
 
MSE = E[ (<math>\theta</math> - 1/2)^2 ] = E[ <math>\theta^2</math> - 2*(1/3)*<math>\theta</math> + (1/4) ] = 1/3 - 1/2 + 1/4 = 1/12
 
MSE = E[ (<math>\theta</math> - 1/2)^2 ] = E[ <math>\theta^2</math> - 2*(1/3)*<math>\theta</math> + (1/4) ] = 1/3 - 1/2 + 1/4 = 1/12
 +
----
 +
[[Main_Page_ECE302Fall2008sanghavi|Back to ECE302 Fall 2008 Prof. Sanghavi]]

Latest revision as of 12:41, 22 November 2011


$ \theta $ is uniform [0,1]

E[ $ \theta^2 $ ] = $ \int\limits_{0}^{1} \theta^2 d\theta $ = 1/3

supp. $ \theta^{hat} $ = 1/3

MSE = E[ ($ \theta $ - 1/3)^2 ] = E[ $ \theta^2 $ - 2*(1/3)*$ \theta $ + (1/3)^2 ] = 1/3 - 2(1/3)(1/2) + (1/3)^2 = (1/3)^2 = 1/9

supp. instead $ \theta^{hat} $ = 1/2

MSE = E[ ($ \theta $ - 1/2)^2 ] = E[ $ \theta^2 $ - 2*(1/3)*$ \theta $ + (1/4) ] = 1/3 - 1/2 + 1/4 = 1/12


Back to ECE302 Fall 2008 Prof. Sanghavi

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett