(Problem 1: Random Point, Revisited)
(Problem 1: Random Point, Revisited)
Line 7: Line 7:
 
@@@insert figure@@@
 
@@@insert figure@@@
  
*(a)
+
*(a) Find the marginal pdf <math>f_X(x)</math> of the random variable <math>X</math>. Find <math>E[X]</math> and <math>Var(X)</math>.
 +
*(b) Using your answer from part (a), find the marginal pdf <math>f_Y(y)</math> of the random variable <math>Y</math>, and its mean and variance, <math>E[Y]</math>, and <math>Var[Y]</math>.
 +
*(c) Find <math>f_{Y|X}(y|\alpha)</math>, the conditional pdf of <math>Y</math> given that <math>X = \alpha</math>, where <math>0 < \alpha < 1/2</math>.  Then find the conditional mean and conditional variance of <math>Y</math> given that <math>X = \alpha</math>.
 +
*(d) What is the MMSE estimator, <math>\hat{y}_{\rm MMSE}(x)</math>?
 +
*(e) What is the Linear MMSE estimator, <math>\hat{y}_{\rm LMMSE}(x)</math>?
  
 
== Problem 2:  Variable Dependency==
 
== Problem 2:  Variable Dependency==

Revision as of 07:03, 2 December 2008

Instructions

Homework 10 can be downloaded here on the ECE 302 course website.

Problem 1: Random Point, Revisited

In the following problems, the random point (X , Y) is uniformly distributed on the shaded region shown.

@@@insert figure@@@

  • (a) Find the marginal pdf $ f_X(x) $ of the random variable $ X $. Find $ E[X] $ and $ Var(X) $.
  • (b) Using your answer from part (a), find the marginal pdf $ f_Y(y) $ of the random variable $ Y $, and its mean and variance, $ E[Y] $, and $ Var[Y] $.
  • (c) Find $ f_{Y|X}(y|\alpha) $, the conditional pdf of $ Y $ given that $ X = \alpha $, where $ 0 < \alpha < 1/2 $. Then find the conditional mean and conditional variance of $ Y $ given that $ X = \alpha $.
  • (d) What is the MMSE estimator, $ \hat{y}_{\rm MMSE}(x) $?
  • (e) What is the Linear MMSE estimator, $ \hat{y}_{\rm LMMSE}(x) $?

Problem 2: Variable Dependency

Problem 3: Noisy Measurement

Problem 4: Digital Loss

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett