m
Line 1: Line 1:
 
[[Category:ECE438Spring2009mboutin]]
 
[[Category:ECE438Spring2009mboutin]]
  
a)<math>h[n] = \frac{1}{8}(\delta[n] + \delta[n-1] +\delta[n-2] +\delta[n-3] +\delta[n-4] +\delta[n-5] +\delta[n-6] +\delta[n-7])</math>
+
a) <br />
 +
<math>h[n] = \frac{1}{8}(\delta[n] + \delta[n-1] +\delta[n-2] +\delta[n-3] +\delta[n-4] +\delta[n-5] +\delta[n-6] +\delta[n-7])</math>
 +
 
 +
b)<br />
 +
<math>y(z) = \frac{1}{8}(x(z) + x(z)z^{-1} + x(z)z^{-2}+x(z)z^{-3}+x(z)z^{-4}+x(z)z^{-5}+x(z)z^{-6}+x(z)z^{-7})</math>
 +
<math>H(z) = \frac{y(z)}{x(z)} =  \frac{1}{8}(1 + z^{-1} + z^{-2}+z^{-3}+z^{-4}+z^{-5}+z^{-6}+z^{-7})</math>

Revision as of 11:14, 1 March 2009


a)
$ h[n] = \frac{1}{8}(\delta[n] + \delta[n-1] +\delta[n-2] +\delta[n-3] +\delta[n-4] +\delta[n-5] +\delta[n-6] +\delta[n-7]) $

b)
$ y(z) = \frac{1}{8}(x(z) + x(z)z^{-1} + x(z)z^{-2}+x(z)z^{-3}+x(z)z^{-4}+x(z)z^{-5}+x(z)z^{-6}+x(z)z^{-7}) $ $ H(z) = \frac{y(z)}{x(z)} = \frac{1}{8}(1 + z^{-1} + z^{-2}+z^{-3}+z^{-4}+z^{-5}+z^{-6}+z^{-7}) $

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009