(New page: Category:MA453Spring2009WaltherLet <math>\scriptstyle H</math> be a normal subgroup of <math>\scriptstyle G</math>. If <math>\scriptstyle H</math> and <math>\scriptstyle G/H</math> are...)
 
Line 124: Line 124:
 
From this, it is obvious that <math>\scriptstyle D_3/H</math> is also Abelian. However, <math>\scriptstyle D_3</math> is not Abelian. For example, <math>\scriptstyle R_{120}F_1\,\,=\,\,F_2</math>, but <math>\scriptstyle F_1R_{120}\,\,=\,\,F_3</math>. Thus, given a normal Abelian subgroup <math>\scriptstyle H</math> of <math>\scriptstyle G</math> such that <math>\scriptstyle G/H</math> is Abelian, <math>\scriptstyle G</math> need not be Abelian as well. <math>\scriptstyle \Box</math>
 
From this, it is obvious that <math>\scriptstyle D_3/H</math> is also Abelian. However, <math>\scriptstyle D_3</math> is not Abelian. For example, <math>\scriptstyle R_{120}F_1\,\,=\,\,F_2</math>, but <math>\scriptstyle F_1R_{120}\,\,=\,\,F_3</math>. Thus, given a normal Abelian subgroup <math>\scriptstyle H</math> of <math>\scriptstyle G</math> such that <math>\scriptstyle G/H</math> is Abelian, <math>\scriptstyle G</math> need not be Abelian as well. <math>\scriptstyle \Box</math>
 
:--[[User:Narupley|Nick Rupley]] 14:43, 16 February 2009 (UTC)
 
:--[[User:Narupley|Nick Rupley]] 14:43, 16 February 2009 (UTC)
 +
 +
 +
----
 +
 +
[[Category:MA453Spring2009Walther]]
 +
Do you have to use a Cayley table for this problem? Or is there another way to do it? When should Cayley tables be used?
 +
--[[User:Awika|Awika]] 17:00, 18 February 2009 (UTC)

Revision as of 12:00, 18 February 2009

Let $ \scriptstyle H $ be a normal subgroup of $ \scriptstyle G $. If $ \scriptstyle H $ and $ \scriptstyle G/H $ are Abelian, must $ \scriptstyle G $ be Abelian?


You need only show a counterexample to the claim: "Given a normal Abelian subgroup $ \scriptstyle H $ of $ \scriptstyle G $ such that $ \scriptstyle G/H $ is Abelian, $ \scriptstyle G $ must also be Abelian." The book cites $ \scriptstyle D_3 $ as such a counterexample.

$ \scriptstyle D_3 $ has the following 6 elements:
$ \scriptstyle R_0\,\,:\,\,ABC\to ABC\,\,\,\,R_{120}\,\,:\,\,ABC\to CAB\,\,\,\,R_{240}\,\,:\,\,ABC\to BCA $
$ \scriptstyle F_1\,\,:\,\,ABC\to CBA\,\,\,\,F_2\,\,:\,\,ABC\to BAC\,\,\,\,F_3\,\,:\,\,ABC\to ACB $

Its Cayley table is:

$ \textstyle D_3 $   $ \textstyle R_0 $ $ \textstyle R_{120} $ $ \textstyle R_{240} $ $ \textstyle F_1 $ $ \textstyle F_2 $ $ \textstyle F_3 $
$ \textstyle R_0 $ $ \scriptstyle R_0 $ $ \scriptstyle R_{120} $ $ \scriptstyle R_{240} $ $ \scriptstyle F_1 $ $ \scriptstyle F_2 $ $ \scriptstyle F_3 $
$ \textstyle R_{120} $ $ \scriptstyle R_{120} $ $ \scriptstyle R_{240} $ $ \scriptstyle R_0 $ $ \scriptstyle F_2 $ $ \scriptstyle F_3 $ $ \scriptstyle F_1 $
$ \textstyle R_{240} $ $ \scriptstyle R_{240} $ $ \scriptstyle R_0 $ $ \scriptstyle R_{120} $ $ \scriptstyle F_3 $ $ \scriptstyle F_1 $ $ \scriptstyle F_2 $
$ \textstyle F_1 $ $ \scriptstyle F_1 $ $ \scriptstyle F_3 $ $ \scriptstyle F_2 $ $ \scriptstyle R_0 $ $ \scriptstyle R_{240} $ $ \scriptstyle R_{120} $
$ \textstyle F_2 $ $ \scriptstyle F_2 $ $ \scriptstyle F_1 $ $ \scriptstyle F_3 $ $ \scriptstyle R_{120} $ $ \scriptstyle R_0 $ $ \scriptstyle R_{240} $
$ \textstyle F_3 $ $ \scriptstyle F_3 $ $ \scriptstyle F_2 $ $ \scriptstyle F_1 $ $ \scriptstyle R_{240} $ $ \scriptstyle R_{120} $ $ \scriptstyle R_0 $

Let $ \scriptstyle H = \{R_0,R_{120},R_{240}\} $. From the Cayley table of $ \scriptstyle D_3 $, it's clear that $ \scriptstyle H $ is Abelian. $ \scriptstyle|D_3:H|\,=\,2 $, so we know that $ \scriptstyle H\triangleleft D_3 $ (we proved this in the previous exercise). $ \scriptstyle D_3/H $ is then $ \scriptstyle \{H,F_1H\} $. The Cayley table for $ \scriptstyle D_3/H $ is:

$ \scriptstyle D_3/H $ $ \scriptstyle H $ $ \scriptstyle F_1H $
$ \scriptstyle H $ $ \scriptstyle H $ $ \scriptstyle F_1H $
$ \scriptstyle F_1H $ $ \scriptstyle F_1H $ $ \scriptstyle H $

From this, it is obvious that $ \scriptstyle D_3/H $ is also Abelian. However, $ \scriptstyle D_3 $ is not Abelian. For example, $ \scriptstyle R_{120}F_1\,\,=\,\,F_2 $, but $ \scriptstyle F_1R_{120}\,\,=\,\,F_3 $. Thus, given a normal Abelian subgroup $ \scriptstyle H $ of $ \scriptstyle G $ such that $ \scriptstyle G/H $ is Abelian, $ \scriptstyle G $ need not be Abelian as well. $ \scriptstyle \Box $

--Nick Rupley 14:43, 16 February 2009 (UTC)



Do you have to use a Cayley table for this problem? Or is there another way to do it? When should Cayley tables be used? --Awika 17:00, 18 February 2009 (UTC)

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison