Line 52: Line 52:
  
 
<math>\left(\frac{n}{3}+5\right)\sum{\left(\frac{3}{2}\right)^i}</math>
 
<math>\left(\frac{n}{3}+5\right)\sum{\left(\frac{3}{2}\right)^i}</math>
 +
 +
 +
 +
== 4-4 ==
 +
A fun experiment with the erroneous randomization algorithm:
 +
[[False randomize]]

Revision as of 18:35, 14 February 2009


Rhea Section for ECE 608 Professor Ghafoor, Spring 2009

If you create a page that belongs to this course, please write

[[Category:ECE608Spring2009ghafoor]]

at the top of the page. You may also add any other category you feel is appropriate (e.g., "homework", "Fourier", etc.).

ECE 608 professor Ghafoor Spring 2009

TA

Hamza Bin Sohail Office Hours: Tuesday & Thursday 4:30-5:30PM in EE306

Course Website

http://cobweb.ecn.purdue.edu/~ee608/

Newsgroup

On the news.purdue.edu server: purdue.class.ece608

One way to access: SSH to a server at Purdue (ie expert.ics.purdue.edu) and type "lynx news.purdue.edu/purdue.class.ece608"

On Ubuntu, you can use the "Pan" newsreader.

  • "sudo apt-get install pan"
  • Set "news.purdue.edu" as the server. You do not need to enter login information.
  • Type "purdue.class.ece608" in the box in the upper-left of the screen.
  • After a delay (half a minute?) the newsgroup will appear in the left pane. You can right click the group to "subscribe".

Reviewed Algorithms

Discussions

Area to post questions, set up study groups, etc.


4-4

Attempted solution for 4-4 part (d): $ T(n) = 3T(n/3+5)+n/2 $

We use the iteration method. Start with recursion tree:

  • Root node: $ \frac{n}{2} $
  • First level: $ 3\frac{\frac{n}{3}+5}{2} $
  • Second level: $ 9\frac{\frac{n}{3}+5}{4} $
  • ith level: $ \left(\frac{3}{2}\right)^i\left(\frac{n}{3}+5\right) $

$ \left(\frac{n}{3}+5\right)\sum{\left(\frac{3}{2}\right)^i} $


4-4

A fun experiment with the erroneous randomization algorithm: False randomize

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett