Line 9: Line 9:
 
----
 
----
 
Let <math>|a|=n</math>. Then <math>\phi_a^n(x)=a^nxa^{-n}=x</math>. Does this mean that <math>|\phi_a|=n</math> as well? Can someone explain what the order of an isomorphism is?
 
Let <math>|a|=n</math>. Then <math>\phi_a^n(x)=a^nxa^{-n}=x</math>. Does this mean that <math>|\phi_a|=n</math> as well? Can someone explain what the order of an isomorphism is?
 +
 +
 +
----
 +
The order of the morphism is the number of iterations of the morphism it takes to return back to the original value. So in this problem, the order is n, because when a^n = a^(-n) = e, you get x back.
 +
 +
--K. Brumbaugh

Revision as of 16:55, 11 February 2009


Let a belong to a group G and let |a| be finite. Let $ \phi_a $ be the automorphism of G given by $ \phi_a (x) = axa^{-1} $. Show that |$ \phi_a $| divides |a|. Exhibit an element a from a group for which 1<|$ \phi_a $|<|a|.


By the properties of isomorphisms, we know that $ \scriptstyle\phi_\alpha\phi_\beta\ =\ \phi_{\alpha\beta} $. Inductively then we know that $ \scriptstyle(\phi_\alpha)^k\ =\ \phi_{\alpha^k} $. Let $ \scriptstyle\mid a\mid\ =\ n $. Then $ \scriptstyle a^n\ =\ e $, and $ \scriptstyle\phi_{a^n}\ =\ \phi_e $. So, $ \scriptstyle(\phi_a)^n\ =\ \phi_{a^n}\ =\ \phi_e $, and $ \scriptstyle\mid\phi_a\mid\ \textstyle\mid\scriptstyle\ n $.

--Nick Rupley 12:15, 11 February 2009 (UTC)

Let $ |a|=n $. Then $ \phi_a^n(x)=a^nxa^{-n}=x $. Does this mean that $ |\phi_a|=n $ as well? Can someone explain what the order of an isomorphism is?



The order of the morphism is the number of iterations of the morphism it takes to return back to the original value. So in this problem, the order is n, because when a^n = a^(-n) = e, you get x back.

--K. Brumbaugh

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010