Line 9: Line 9:
 
--[[User:Mlo|Mlo]] 12:03, 13 January 2009 (UTC)
 
--[[User:Mlo|Mlo]] 12:03, 13 January 2009 (UTC)
  
Link to ECE438 Spring 2009 [https://kiwi.ecn.purdue.edu/rhea/index.php/ECE438_%28BoutinSpring2009%29]
 
  
LaTex editor: http://thornahawk.unitedti.org/equationeditor/equationeditor.php
+
----
  
[[HW 3 Question 4 mlo]]
+
== Misc Links ==
  
Experimenting with inserting formulas to participate in hw discussion
 
  
Hw1:
+
Link to ECE438 Spring 2009 [https://kiwi.ecn.purdue.edu/rhea/index.php/ECE438_%28BoutinSpring2009%29]
  
<math>x_(t) \,\!= \cos(\frac{\pi}{2})rect(\frac{t}{2}) \quad (1)</math>
+
LaTex editor: http://thornahawk.unitedti.org/equationeditor/equationeditor.php
  
Using the convolution property
 
  
<math>X_(f) = \mathcal{F} (cos(\frac{\pi t}{2}))* \mathcal{F}(rect(\frac{t}{2}))</math>
+
== Homework Workouts ==
  
where
 
  
<math>\mathcal{F} (cos(\frac{\pi t}{2})) = \frac{1}{2} [\delta(f - \frac{1}{4}) + \delta(f + \frac{1}{4})] </math>
+
[[HW 3 Question 4 mlo]]
 
+
and
+
 
+
<math> \mathcal{F}(rect(\frac{t}{2})) = 2 sinc( 2 f) </math>
+
  
substituting the known transforms into <math>\quad (1)</math>
 
  
<math>X_(f) = \frac{1}{2} [\delta(f - \frac{1}{4}) + \delta(f + \frac{1}{4})] *  2 sinc( 2 f) </math>
+
== ECE438 Workouts ==
  
Evaluating the statement ( using sifting )
 
  
<math>X_(f) =  sinc(2 (f - \frac{1}{4}) + sinc( 2(f+\frac{1}{4}))
+
[[Getting X(w) from X(f)]]

Revision as of 16:41, 11 February 2009

Howdy, My name is Myron Lo and I'm a senior in EE.

I enjoy photography, combat sports, and Minidisc.


Myron guitar.jpg


--Mlo 12:03, 13 January 2009 (UTC)



Misc Links

Link to ECE438 Spring 2009 [1]

LaTex editor: http://thornahawk.unitedti.org/equationeditor/equationeditor.php


Homework Workouts

HW 3 Question 4 mlo


ECE438 Workouts

Getting X(w) from X(f)

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics