Line 8: Line 8:
  
 
--[[User:Mlo|Mlo]] 12:03, 13 January 2009 (UTC)
 
--[[User:Mlo|Mlo]] 12:03, 13 January 2009 (UTC)
 +
 +
LaTex editor: http://thornahawk.unitedti.org/equationeditor/equationeditor.php
  
 
Experimenting with inserting formulas to participate in hw discussion  
 
Experimenting with inserting formulas to participate in hw discussion  
Line 13: Line 15:
 
Hw1:
 
Hw1:
  
<math>x_(t) \,\!= \cos(\frac{\pi}{2})rect(\frac{t}{2})</math>
+
<math>x_(t) \,\!= \cos(\frac{\pi}{2})rect(\frac{t}{2}) \quad (1)</math>  
  
 
Using the convolution property
 
Using the convolution property
Line 21: Line 23:
 
where
 
where
  
<math>\mathcal{F} (cos(\frac{\pi t}{2})) = \frac{1}{2} [\delta(f - \frac{1}{4}) + \delta(f + \frac{1}{4})]</math>
+
<math>\mathcal{F} (cos(\frac{\pi t}{2})) = \frac{1}{2} [\delta(f - \frac{1}{4}) + \delta(f + \frac{1}{4})] </math>
  
 
and
 
and
  
<math>\mathcal{F}(rect(\frac{t}{2})) = 2\sinc <math>
+
<math> \mathcal{F}(rect(\frac{t}{2})) = 2 sinc( 2 f) </math>
 +
 
 +
substituting the known transforms into <math>\quad (1)</math>
 +
 
 +
<math>X_(f) = \frac{1}{2} [\delta(f - \frac{1}{4}) + \delta(f + \frac{1}{4})] *  2 sinc( 2 f) </math>
 +
 
 +
Evaluating the statement ( using sifting )
 +
 
 +
<math>X_(f) =  sinc(2 (f - \frac{1}{4}) + sinc( 2(f+\frac{1}{4}))

Revision as of 11:03, 9 February 2009

Howdy, My name is Myron Lo and I'm a senior in EE.

I enjoy photography, combat sports, and Minidisc.


Myron guitar.jpg


--Mlo 12:03, 13 January 2009 (UTC)

LaTex editor: http://thornahawk.unitedti.org/equationeditor/equationeditor.php

Experimenting with inserting formulas to participate in hw discussion

Hw1:

$ x_(t) \,\!= \cos(\frac{\pi}{2})rect(\frac{t}{2}) \quad (1) $

Using the convolution property

$ X_(f) = \mathcal{F} (cos(\frac{\pi t}{2}))* \mathcal{F}(rect(\frac{t}{2})) $

where

$ \mathcal{F} (cos(\frac{\pi t}{2})) = \frac{1}{2} [\delta(f - \frac{1}{4}) + \delta(f + \frac{1}{4})] $

and

$ \mathcal{F}(rect(\frac{t}{2})) = 2 sinc( 2 f) $

substituting the known transforms into $ \quad (1) $

$ X_(f) = \frac{1}{2} [\delta(f - \frac{1}{4}) + \delta(f + \frac{1}{4})] * 2 sinc( 2 f) $

Evaluating the statement ( using sifting )

$ X_(f) = sinc(2 (f - \frac{1}{4}) + sinc( 2(f+\frac{1}{4})) $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva