(New page: 1 a) <math>x_(t) = \cos(pi*2)rect(t/2)</math>)
 
Line 1: Line 1:
 
1 a)
 
1 a)
  
<math>x_(t) = \cos(pi*2)rect(t/2)</math>
+
<math>x_(t) \,\!= \cos(\frac{\pi}{2})rect(\frac{t}{2})</math>
 +
 
 +
Based on the Prof Alen's note page 179
 +
 
 +
<math>x_(f) \,\!= \frac{1}{2}( \delta (f - \frac{1}{4}) + \delta (f + \frac{1}{4}))sinc(t/2)</math>
 +
 
 +
 
 +
b)
 +
 
 +
<math>x_(t) \,\!= \cos(\frac{\pi}{2})rect(\frac{t}{2})</math>
 +
 
 +
Based on the Prof Alen's note page 179
 +
 
 +
<math>x_(f) \,\!= \frac{1}{2}( \delta (f - \frac{1}{4}) + \delta (f + \frac{1}{4}))sinc(t/2)</math>

Revision as of 17:26, 7 February 2009

1 a)

$ x_(t) \,\!= \cos(\frac{\pi}{2})rect(\frac{t}{2}) $

Based on the Prof Alen's note page 179

$ x_(f) \,\!= \frac{1}{2}( \delta (f - \frac{1}{4}) + \delta (f + \frac{1}{4}))sinc(t/2) $


b)

$ x_(t) \,\!= \cos(\frac{\pi}{2})rect(\frac{t}{2}) $

Based on the Prof Alen's note page 179

$ x_(f) \,\!= \frac{1}{2}( \delta (f - \frac{1}{4}) + \delta (f + \frac{1}{4}))sinc(t/2) $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang