(New page: Let <math>\scriptstyle p</math> be a prime. Show that in a cyclic group of order <math>\scriptstyle p^n-1</math>, every element is a <math>\scriptstyle p</math>th power (that is, every ele...) |
|||
Line 1: | Line 1: | ||
− | Let <math>\scriptstyle p</math> be a prime. Show that in a cyclic group of order <math>\scriptstyle p^n-1</math>, every element is a <math>\scriptstyle p</math>th power (that is, every element can be written in the form <math>\scriptstyle a^p</math> for some <math>\scriptstyle a</math>). | + | [[Category:MA453Spring2009Walther]]Let <math>\scriptstyle p</math> be a prime. Show that in a cyclic group of order <math>\scriptstyle p^n-1</math>, every element is a <math>\scriptstyle p</math>th power (that is, every element can be written in the form <math>\scriptstyle a^p</math> for some <math>\scriptstyle a</math>). |
---- | ---- | ||
Consider a cyclic group <math>\scriptstyle G</math> of order <math>\scriptstyle p^n-1</math>, where <math>\scriptstyle p</math> is prime. Because <math>\scriptstyle G</math> is cyclic, there exists at least one generator <math>\scriptstyle a\mid a\in G</math>. Thus, <math>\scriptstyle G=\langle a\rangle</math>. Since <math>\scriptstyle gcd(p^n-1,p)=1</math>, by Corollary 2 of Theorem 4.2, <math>\scriptstyle G=\langle a^p\rangle</math>. This means that every element of <math>\scriptstyle G</math> is contained in the list <math>\scriptstyle a^{p^1},a^{p^2},\ldots,a^{p^{p^n-1}}</math>. But then, this list may be equivalently written as <math>\scriptstyle (a^1)^p,(a^2)^p,\ldots,(a^{p^n-1})^p</math>. It is then clear that every element of <math>\scriptstyle G</math> is a <math>\scriptstyle p</math>th power of some <math>\scriptstyle a</math>. | Consider a cyclic group <math>\scriptstyle G</math> of order <math>\scriptstyle p^n-1</math>, where <math>\scriptstyle p</math> is prime. Because <math>\scriptstyle G</math> is cyclic, there exists at least one generator <math>\scriptstyle a\mid a\in G</math>. Thus, <math>\scriptstyle G=\langle a\rangle</math>. Since <math>\scriptstyle gcd(p^n-1,p)=1</math>, by Corollary 2 of Theorem 4.2, <math>\scriptstyle G=\langle a^p\rangle</math>. This means that every element of <math>\scriptstyle G</math> is contained in the list <math>\scriptstyle a^{p^1},a^{p^2},\ldots,a^{p^{p^n-1}}</math>. But then, this list may be equivalently written as <math>\scriptstyle (a^1)^p,(a^2)^p,\ldots,(a^{p^n-1})^p</math>. It is then clear that every element of <math>\scriptstyle G</math> is a <math>\scriptstyle p</math>th power of some <math>\scriptstyle a</math>. | ||
− | :--[[User:Narupley| | + | :--[[User:Narupley|Nick Rupley]] 04:56, 4 February 2009 (UTC) |
Revision as of 23:56, 3 February 2009
Let $ \scriptstyle p $ be a prime. Show that in a cyclic group of order $ \scriptstyle p^n-1 $, every element is a $ \scriptstyle p $th power (that is, every element can be written in the form $ \scriptstyle a^p $ for some $ \scriptstyle a $).
Consider a cyclic group $ \scriptstyle G $ of order $ \scriptstyle p^n-1 $, where $ \scriptstyle p $ is prime. Because $ \scriptstyle G $ is cyclic, there exists at least one generator $ \scriptstyle a\mid a\in G $. Thus, $ \scriptstyle G=\langle a\rangle $. Since $ \scriptstyle gcd(p^n-1,p)=1 $, by Corollary 2 of Theorem 4.2, $ \scriptstyle G=\langle a^p\rangle $. This means that every element of $ \scriptstyle G $ is contained in the list $ \scriptstyle a^{p^1},a^{p^2},\ldots,a^{p^{p^n-1}} $. But then, this list may be equivalently written as $ \scriptstyle (a^1)^p,(a^2)^p,\ldots,(a^{p^n-1})^p $. It is then clear that every element of $ \scriptstyle G $ is a $ \scriptstyle p $th power of some $ \scriptstyle a $.
- --Nick Rupley 04:56, 4 February 2009 (UTC)