(New page: =<math>f_X (x;\lambda)= \lambda e^{-\lambda x}</math>= *to find <math>\hat \lambda_{ml}</math> maximize <math>\lambda e^{-\lambda x} </math> by taking the derivative *<math>-e^{-\hat \...)
 
 
Line 8: Line 8:
 
*<math>\hat \lambda x = 1</math>
 
*<math>\hat \lambda x = 1</math>
  
*<math>\hat \lambda = 1/x</math>
+
*<math>\hat \lambda_{ML} = 1/x</math>

Latest revision as of 06:44, 9 November 2008

$ f_X (x;\lambda)= \lambda e^{-\lambda x} $

  • to find $ \hat \lambda_{ml} $ maximize $ \lambda e^{-\lambda x} $ by taking the derivative
  • $ -e^{-\hat \lambda x} - \hat \lambda x e^{-\hat \lambda x} = 0 $
  • $ \hat \lambda x = 1 $
  • $ \hat \lambda_{ML} = 1/x $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett