(New page: X is exponential RV with unknown parameter lambda, which we want to find. Sample X=x <math>f_X(x;\lambda)=\lambda e^{-\lambda x}</math> Therefore: <math>\lambda^{hat}_{ML}=max(\lambda...) |
|||
Line 1: | Line 1: | ||
+ | [[Category:ECE302Fall2008_ProfSanghavi]] | ||
+ | [[Category:probabilities]] | ||
+ | [[Category:ECE302]] | ||
+ | [[Category:problem solving]] | ||
+ | |||
X is exponential RV with unknown parameter lambda, which we want to find. | X is exponential RV with unknown parameter lambda, which we want to find. | ||
Line 17: | Line 22: | ||
<math>\lambda^{hat}_{ML}=\frac{1}{x}</math> | <math>\lambda^{hat}_{ML}=\frac{1}{x}</math> | ||
+ | ---- | ||
+ | [[Main_Page_ECE302Fall2008sanghavi|Back to ECE302 Fall 2008 Prof. Sanghavi]] |
Latest revision as of 12:36, 22 November 2011
X is exponential RV with unknown parameter lambda, which we want to find.
Sample X=x
$ f_X(x;\lambda)=\lambda e^{-\lambda x} $
Therefore:
$ \lambda^{hat}_{ML}=max(\lambda e^{-\lambda x}) $
$ \frac{\delta}{\delta\lambda}(\lambda e^{-\lambda x})=e^{-\lambda x}-\lambda e^{-\lambda x}=0 $
Solving for lambda gives us:
$ \lambda^{hat}_{ML}=\frac{1}{x} $