(New page: a)Let x be number of hours to catch a fish Pr[x>=a]<=(E[x]/a) <- def of markov inqeuality plug in numbers: E[x]=1 (given) a=3 so we get: Pr[take 3 hours to catch a fish]= Pr[x>...)
 
Line 4: Line 4:
 
   so we get:
 
   so we get:
 
   Pr[take 3 hours to catch a fish]= Pr[x>=3]<=(1/3)
 
   Pr[take 3 hours to catch a fish]= Pr[x>=3]<=(1/3)
b)Pr[not catch any fish in 2 hours] = 1 - Pr[catch fish in 2+ hours]  
+
b)Pr[not catch any fish in 2 hours]
                                    = 1 - (Pr[x>=2]<=(1/2))
+
= 1 - Pr[catch fish in 2+ hours]  
                                    >=(1/2)
+
= 1 - (Pr[x>=2]<=(1/2))
 +
>=(1/2)

Revision as of 07:04, 3 November 2008

a)Let x be number of hours to catch a fish

 Pr[x>=a]<=(E[x]/a)   <- def of markov inqeuality
 plug in numbers: E[x]=1 (given)   a=3
 so we get:
 Pr[take 3 hours to catch a fish]= Pr[x>=3]<=(1/3)

b)Pr[not catch any fish in 2 hours]

= 1 - Pr[catch fish in 2+ hours] 
= 1 - (Pr[x>=2]<=(1/2))
>=(1/2)

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva