Line 103: | Line 103: | ||
<li>Periodic vs. non-periodic | <li>Periodic vs. non-periodic | ||
<ul><li> if <math>\exists</math> positive T such that x(t+T) = x(t),<math>\forall t</math> then we say that x(t) is periodic with period T</li></ul> | <ul><li> if <math>\exists</math> positive T such that x(t+T) = x(t),<math>\forall t</math> then we say that x(t) is periodic with period T</li></ul> | ||
+ | </li> | ||
+ | </ul> | ||
+ | |||
+ | == ECE438 Course Notes January 16, 2009 == | ||
+ | |||
+ | <p><strong>Todays Goals</strong> | ||
+ | <ul> | ||
+ | <li>Signal Characteristics</li> | ||
+ | <li>Signal Transformations</li> | ||
+ | <li>Special Signals</li> | ||
+ | <li>Singularity Functions</li> | ||
+ | </ul> | ||
+ | </p> | ||
+ | |||
+ | <p><strong>right sided signal: </strong><br/> | ||
+ | <math>\exists t_{min} (n_{min})</math> such that <math>x(t) = 0</math> when <math>t < t_{min}</math> | ||
+ | </p> | ||
+ | |||
+ | <p><strong>left sided signal: </strong><br/> | ||
+ | <math>\exists t_{max} (n_{max})</math> such that <math>x(t) = 0</math> when <math>t > t_{max}</math><br/> | ||
+ | if <math>t_{max} \leq 0</math> we say the signal is <u>anticausal</u> | ||
+ | </p> | ||
+ | |||
+ | <p><strong>two sided (mixed causal):</strong><br/> | ||
+ | neither left sided nor right sided | ||
+ | </p> | ||
+ | |||
+ | <p><strong>Finite Duration Signal: </strong><br/> | ||
+ | both right and left sided, <math>\exists t_{min},t_{max}</math> such that <math>x(t) = 0</math> for <math>t > t_{max}</math> and <math>t < t_{min}</math> | ||
+ | </p> | ||
+ | |||
+ | <h3>Signal Metrics</h3> | ||
+ | <br/> | ||
+ | <ul style="list-style:none;"> | ||
+ | <li><strong>Signal Energy</strong> | ||
+ | <ul style="list-style:none;"> | ||
+ | <li> | ||
+ | <p><math>E_x = \int_{-\infty}^{\infty} |x(t)|^2\,dt</math> for ct (continuous time)</p> | ||
+ | <p><math>E_x = \sum_{n=-\infty}^{\infty} |x(n)|^2</math> for dt (discrete time)</p> | ||
+ | </li> | ||
+ | </ul> | ||
+ | </li> | ||
+ | <li><strong>Signal Power</strong> | ||
+ | <ul style="list-style:none;"> | ||
+ | <li> | ||
+ | <p><math>P_x = \lim_{T \Rightarrow \infty}\frac{1}{2T}\int_{-T}^{T} |x(t)|^2\,dt</math> for ct (continuous time)</p> | ||
+ | <p><math>P_x = \lim_{N \Rightarrow \infty}\sum_{n=-N}^{N} |x(n)|^2</math> for ct (continuous time)</p> | ||
+ | <p>note: for periodic signals <br/> | ||
+ | <math>P_x = \frac{1}{N}\sum_{n=0}^{N-1}|x(n)|^2</math> | ||
+ | </p> | ||
+ | </li> | ||
+ | </ul> | ||
+ | </li> | ||
+ | <li><strong>Signal RMS (root-mean-square)</strong> | ||
+ | <ul style="list-style:none;"> | ||
+ | <li> | ||
+ | <math>X_{rms} = \sqrt{P_x}</math> | ||
+ | </li> | ||
+ | </ul> | ||
+ | </li> | ||
+ | <li><strong>Signal Magnitude</strong> | ||
+ | <ul style="list-style:none;"> | ||
+ | <li> | ||
+ | <p><math>m_x = max|x(t)|</math>, for CT</p> | ||
+ | <p><math>m_x = max|x(n)|</math>, for DT</p> | ||
+ | <p> if <math>m_x < \infty</math>, we say signal is bounded</p> | ||
+ | </li> | ||
+ | </ul> | ||
+ | </li> | ||
+ | <li><strong>Scaling (<math>y(t) = x(\frac{t}{a})</math>)</strong> | ||
+ | <ul style="list-style:none;"> | ||
+ | <li> | ||
+ | <p>note: y(0) = x(0), fixed point at t=0<br/> | ||
+ | if a > 1, graph will narrow<br/> | ||
+ | if a < 1, graph will expand<br/><br/> | ||
+ | <font style="color:red;">if a>1 will not work for digital signals</font> | ||
+ | </p><br/> | ||
+ | <p><strong>Down Sampler:</strong><br/> | ||
+ | <math>y(n) = x(Dn)</math>, D = integer > 1<br/> | ||
+ | <math>x(n) \Rightarrow D\Downarrow \Rightarrow y(n)</math> | ||
+ | </p> | ||
+ | <p><strong>Up Sampler:</strong> <math>x(n) \Rightarrow D\Uparrow \Rightarrow y(n)</math><br/> | ||
+ | <math>y(n) = x(\frac{n}{D})</math>, if n/D is an integer | ||
+ | </p> | ||
+ | <p><strong>Scaling and Shifting</strong> <math>y(t) = x(\frac{t}{a}-t_0)</math><br/> | ||
+ | note: <math>y(0) = x(-t_0)</math> | ||
+ | </p> | ||
+ | </li> | ||
+ | </ul> | ||
</li> | </li> | ||
</ul> | </ul> |
Revision as of 07:38, 20 January 2009
Contents
ECE438 Course Notes January 14, 2009
1)Definitions
ECE438 is about digital signals and systems
2) Digital Signal = a signal that can be represented by a sequence of 0's and 1's.
so the signal must be DT X(t) = t, i.e. need x(n), n belongs to Z
Signal values must be discrete
-$ x(n) \in {0,1} $ <-- binary valued signal
$ x(n) \in {0,1,2,...,255} $ <-- gray scale valued signal
Another example of digital signal
-the pixels in a bitmap image (grayscale) can have a value of 0,1,2,...,255 for each individual pixel. --If you concatenate all the rows of the image you can convert it to a 1 dimensional signal. i.e. $ x = (row1,row2,row3) $
2D Digital signal = signal that can be represented by an array of 0's and 1's
example: 128x128 gray scale image
$ p_{ij} \in {0,...,255} $
matrix $ A_{ij} = p_{ij} $ of size 128x128
Digital signals play an important roll in forensics applications such as: watermarking, image identification, and forgery detection among many others. Go to PSAPF and VIP's Sensor Forensics to find out more information about these applications.
Digital Systems = system that can process a ditital signal.
E.g.
- Software (MATLAB,C, ...)
- Firmware
- Digital Hardware
Advantages of Digital Systems
- precise,reproducable
- easier to store data
- easier to build:
- just need to represent 2 states instead of a continuous range of values
Software based digital systems
- easier to build
- cheap to build
- adaptable
- easy to fix/upgrade
Hardware-based digital systems
- fast.
Continuous time world
|
Digital World
|
These world are brought together using sampling & quantization, as well as reconstruction
Signal Characteristics
- Deterministic vs. random
- x(t) well defined , s.a. $ x(t) = e^{j\pi t} $
- x(n) well defined , s.a. $ x(n) = j^{n} $
ex: Lena's image
- Random
- x(t) drawn according to some distribution
- example: x(t) white noise
x = rand(10) (almost) random
- Periodic vs. non-periodic
- if $ \exists $ positive T such that x(t+T) = x(t),$ \forall t $ then we say that x(t) is periodic with period T
ECE438 Course Notes January 16, 2009
Todays Goals
- Signal Characteristics
- Signal Transformations
- Special Signals
- Singularity Functions
right sided signal:
$ \exists t_{min} (n_{min}) $ such that $ x(t) = 0 $ when $ t < t_{min} $
left sided signal:
$ \exists t_{max} (n_{max}) $ such that $ x(t) = 0 $ when $ t > t_{max} $
if $ t_{max} \leq 0 $ we say the signal is anticausal
two sided (mixed causal):
neither left sided nor right sided
Finite Duration Signal:
both right and left sided, $ \exists t_{min},t_{max} $ such that $ x(t) = 0 $ for $ t > t_{max} $ and $ t < t_{min} $
Signal Metrics
- Signal Energy
-
$ E_x = \int_{-\infty}^{\infty} |x(t)|^2\,dt $ for ct (continuous time)
$ E_x = \sum_{n=-\infty}^{\infty} |x(n)|^2 $ for dt (discrete time)
-
- Signal Power
-
$ P_x = \lim_{T \Rightarrow \infty}\frac{1}{2T}\int_{-T}^{T} |x(t)|^2\,dt $ for ct (continuous time)
$ P_x = \lim_{N \Rightarrow \infty}\sum_{n=-N}^{N} |x(n)|^2 $ for ct (continuous time)
note: for periodic signals
$ P_x = \frac{1}{N}\sum_{n=0}^{N-1}|x(n)|^2 $
-
- Signal RMS (root-mean-square)
- $ X_{rms} = \sqrt{P_x} $
- Signal Magnitude
-
$ m_x = max|x(t)| $, for CT
$ m_x = max|x(n)| $, for DT
if $ m_x < \infty $, we say signal is bounded
-
- Scaling ($ y(t) = x(\frac{t}{a}) $)
-
note: y(0) = x(0), fixed point at t=0
if a > 1, graph will narrow
if a < 1, graph will expand
if a>1 will not work for digital signals
Down Sampler:
$ y(n) = x(Dn) $, D = integer > 1
$ x(n) \Rightarrow D\Downarrow \Rightarrow y(n) $Up Sampler: $ x(n) \Rightarrow D\Uparrow \Rightarrow y(n) $
$ y(n) = x(\frac{n}{D}) $, if n/D is an integerScaling and Shifting $ y(t) = x(\frac{t}{a}-t_0) $
note: $ y(0) = x(-t_0) $
-