(New page: Howdy, My name is Myron Lo and I'm a senior in EE. I enjoy photography, combat sports, and Minidisc. Image:Myron_guitar.jpg --~~~~)
 
Line 8: Line 8:
  
 
--[[User:Mlo|Mlo]] 12:03, 13 January 2009 (UTC)
 
--[[User:Mlo|Mlo]] 12:03, 13 January 2009 (UTC)
 +
 +
Experimenting with inserting formulas to participate in hw discussion
 +
 +
Hw1:
 +
 +
<math>x_(t) \,\!= \cos(\frac{\pi}{2})rect(\frac{t}{2})</math>
 +
 +
Using the convolution property
 +
 +
<math>X_(f) =  \mathcal{F} (cos(\frac{\pi t}{2}))* \mathcal{F}(rect(\frac{t}{2}))</math>
 +
 +
where
 +
 +
<math>\mathcal{F} (cos(\frac{\pi t}{2})) = \frac{1}{2} [\delta(f - \frac{1}{4}]</math>

Revision as of 09:07, 9 February 2009

Howdy, My name is Myron Lo and I'm a senior in EE.

I enjoy photography, combat sports, and Minidisc.


Myron guitar.jpg


--Mlo 12:03, 13 January 2009 (UTC)

Experimenting with inserting formulas to participate in hw discussion

Hw1:

$ x_(t) \,\!= \cos(\frac{\pi}{2})rect(\frac{t}{2}) $

Using the convolution property

$ X_(f) = \mathcal{F} (cos(\frac{\pi t}{2}))* \mathcal{F}(rect(\frac{t}{2})) $

where

$ \mathcal{F} (cos(\frac{\pi t}{2})) = \frac{1}{2} [\delta(f - \frac{1}{4}] $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett