Line 11: Line 11:
 
We have a group G = <a>. Say that a is a generator of the group. The problem says that p be prime. So as a result we know that p and <math>p^n - 1</math> are relativey prime.  By the definition of relatively prime we know that the gcd of p and <math>p^n - 1</math> is 1. Therefore, by Corollary 2 we know that G = <math><a^k></math> and that it also generates the group.  
 
We have a group G = <a>. Say that a is a generator of the group. The problem says that p be prime. So as a result we know that p and <math>p^n - 1</math> are relativey prime.  By the definition of relatively prime we know that the gcd of p and <math>p^n - 1</math> is 1. Therefore, by Corollary 2 we know that G = <math><a^k></math> and that it also generates the group.  
 
Note: <math>(a^p)^k = (a^k)^p</math>
 
Note: <math>(a^p)^k = (a^k)^p</math>
 +
 +
--[[User:Robertsr|Robertsr]] 19:14, 20 September 2008 (UTC)

Revision as of 14:14, 20 September 2008

The back of the book gives an answer, but I don't find it helpful. Does anyone have a good explaination on how to work this problem?

--Akcooper 16:34, 17 September 2008 (UTC)

Thm. 4.2 says that Let a be an element of order n in a group and let k be a positive integer. Then $ <a^k> = <a^{gcd(n,k)}> $ and $ |a^k| = n/gcd(n,k) $.

Corollary 2 says Let G = <a> be a cyclic group of order n. Then G = $ <a^k> $ if and only if gcd(n,k)=1

Corollary 3 says an integer k in $ Z_n $ is a generator of $ Z_n $ if and only if gcd(n,k) =1

We have a group G = <a>. Say that a is a generator of the group. The problem says that p be prime. So as a result we know that p and $ p^n - 1 $ are relativey prime. By the definition of relatively prime we know that the gcd of p and $ p^n - 1 $ is 1. Therefore, by Corollary 2 we know that G = $ <a^k> $ and that it also generates the group. Note: $ (a^p)^k = (a^k)^p $

--Robertsr 19:14, 20 September 2008 (UTC)

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison