Line 1: Line 1:
 +
=[[HW3_MA453Fall2008walther|HW3]], Chapter 4, Problem 9, [[MA453]], Fall 2008, [[user:walther|Prof. Walther]]=
 +
==Problem Statement==
 +
''Could somebody please state the problem?''
 +
 +
----
 +
==Discussion==
 +
 
I do not understand how to tell what a generator of a subgroup is? I think that the subgroups of Z20 are (1,2,4,5,10,20), but that also might not be right. Anyways I could use a little explanation please.
 
I do not understand how to tell what a generator of a subgroup is? I think that the subgroups of Z20 are (1,2,4,5,10,20), but that also might not be right. Anyways I could use a little explanation please.
  
Line 8: Line 15:
 
----
 
----
  
There is a corrolary to the Fundamental Theorem of Cyclic Groups on page 79 of the textbook that is really useful for this problem.
+
There is a corollary to the Fundamental Theorem of Cyclic Groups on page 79 of the textbook that is really useful for this problem.
 
Say you want to find all subgroups of <math>Z_n</math>.  The corrolary states that, for each positive divisor k of n, the set <math>\langle n/k \rangle</math> is the unique subgroup of <math>Z_n</math> of order k.  It also states that these subgroups are the only ones <math>Z_n</math> has.
 
Say you want to find all subgroups of <math>Z_n</math>.  The corrolary states that, for each positive divisor k of n, the set <math>\langle n/k \rangle</math> is the unique subgroup of <math>Z_n</math> of order k.  It also states that these subgroups are the only ones <math>Z_n</math> has.
 
Hence, to enumerate the subgroups, just find all the positive integer divisors of n (in this case 20), and use them to generate the subgroups.
 
Hence, to enumerate the subgroups, just find all the positive integer divisors of n (in this case 20), and use them to generate the subgroups.
 
  
 
----
 
----
Line 24: Line 30:
  
 
-Ozgur
 
-Ozgur
 +
----
 +
----
 +
[[HW3_MA453Fall2008walther|Back to HW3]]
 +
 +
[[Main_Page_MA453Fall2008walther|Back to MA453 Fall 2008 Prof. Walther]]

Latest revision as of 17:07, 22 October 2010

HW3, Chapter 4, Problem 9, MA453, Fall 2008, Prof. Walther

Problem Statement

Could somebody please state the problem?


Discussion

I do not understand how to tell what a generator of a subgroup is? I think that the subgroups of Z20 are (1,2,4,5,10,20), but that also might not be right. Anyways I could use a little explanation please.


Check the back of the book. Theres a selected answer/hint section. It gives some good information about the problem. The subgroups are given by (1,2,4,5,10,20), which are the generators. So I think you are on the right track. Hope that helps.



There is a corollary to the Fundamental Theorem of Cyclic Groups on page 79 of the textbook that is really useful for this problem. Say you want to find all subgroups of $ Z_n $. The corrolary states that, for each positive divisor k of n, the set $ \langle n/k \rangle $ is the unique subgroup of $ Z_n $ of order k. It also states that these subgroups are the only ones $ Z_n $ has. Hence, to enumerate the subgroups, just find all the positive integer divisors of n (in this case 20), and use them to generate the subgroups.


Confusion... So, does it mean generator = subgroup? I mean,... like for the example above, 1,2,4,5,10,20 are the generators and <1>,<2>,<4>.... are the subgroup??? Correct me if I'm wrong... Thanks

--Mmohamad 21:07, 21 September 2008 (UTC)


It does not mean that generator = subgroup. You get the generators from the group and you get the subgroups from the generators. Your notation is correct. 1,2,4,... are the generators and <1>,<2>,<4>, ... are the subgroups. For example, 1 is a generator and the subgroup of 1 is = <1> which is in fact = {1,2,3,4,5,6,7,8,9,...., 0} in this case.

-Ozgur



Back to HW3

Back to MA453 Fall 2008 Prof. Walther

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang